Data from: Phenotype-limited distributions: Short-billed birds move away during times that prey bury deeply

Dataset

Description

In our seasonal world, animals face a variety of environmental conditions in the course of the year. To cope with such seasonality, animals may be phenotypically flexible, but some phenotypic traits are fixed. If fixed phenotypic traits are functionally linked to resource use, then animals should redistribute in response to seasonally changing resources, leading to a ‘phenotype-limited’ distribution. Here, we examine this possibility for a shorebird, the bar-tailed godwit (Limosa lapponica; a long-billed and sexually dimorphic shorebird), that has to reach buried prey with a probing bill of fixed length. The main prey of female bar-tailed godwits is buried deeper in winter than in summer. Using sightings of individually marked females, we found that in winter only longer-billed individuals remained in the Dutch Wadden Sea, while the shorter-billed individuals moved away to an estuary with a more benign climate such as the Wash. Although longer-billed individuals have the widest range of options in winter and could therefore be selected for, counterselection may occur during the breeding season on the tundra, where surface-living prey may be captured more easily with shorter bills. Phenotype-limited distributions could be a widespread phenomenon and, when associated with assortative migration and mating, it may act as a precursor of phenotypic evolution.

The data package contains 4 files:
- Percentage of energy (AFDM) in diet
- Bill lengths of first and consequent catches
- Predicted Energy Intake Rate (PEIR)
- Mean bill length of bar-tailed godwits (Limosa lapponica)
Date made available19-May-2015
PublisherUniversity of Groningen
Temporal coverage1980 - 2014
Geographical coverageWadden Sea, The Netherlands

Keywords on Datasets

  • Body size
  • distribution
  • food availability
  • Morphology
  • Resource-use
  • Arenicola marina
  • Limosa lapponica
  • Shorebird
  • godwit
  • Ecology
  • Behaviour

Cite this