A Biomimetic 3D-Self-Forming Approach for Microvascular Scaffolds

Liucheng Zhang, Yi Xiang, Hongbo Zhang, Liying Cheng, Xiyuan Mao, Ning An, Lu Zhang, Jinxiong Zhou, Lianfu Deng, Yuguang Zhang*, Xiaoming Sun*, Hélder A. Santos*, Wenguo Cui*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

38 Citations (Scopus)
22 Downloads (Pure)

Abstract

The development of science and technology often drew lessons from natural phenomena. Herein, inspired by drying-driven curling of apple peels, hydrogel-based micro-scaled hollow tubules (MHTs) are proposed for biomimicking microvessels, which promote microcirculation and improve the survival of random skin flaps. MHTs with various pipeline structures are fabricated using hydrogel in corresponding shapes, such as Y-branches, anastomosis rings, and triangle loops. Adjustable diameters can be achieved by altering the concentration and cross-linking time of the hydrogel. Based on this rationale, biomimetic microvessels with diameters of 50-500 mu m are cultivated in vitro by coculture of MHTs and human umbilical vein endothelial cells. In vivo studies show their excellent performance to promote microcirculation and improve the survival of random skin flaps. In conclusion, the present work proposes and validifies a biomimetic 3D self-forming method for the fabrication of biomimetic vessels and microvascular scaffolds with high biocompatibility and stability based on hydrogel materials, such as gelatin and hyaluronic acid.
Original languageEnglish
Article number1903553
Number of pages10
JournalAdvanced science
Volume7
Issue number9
DOIs
Publication statusPublished - 6-May-2020
Externally publishedYes

Keywords

  • CELLS
  • CHITOSAN
  • HYDROGEL
  • SKIN FLAP
  • VASCULARIZATION
  • bioinspired materials
  • biomimetic microvessels
  • self-forming
  • vascular scaffolds
  • 318 Medical biotechnology
  • 317 Pharmacy

Cite this