Abstract
The α-tree algorithm is a useful hierarchical representation technique which facilitates comprehension of images
such as remote sensing and medical images. Most α-tree algorithms make use of priority queues to process image edges
in a correct order, but because traditional priority queues are
inefficient in α-tree algorithms using extreme-dynamic-range
pixel dissimilarities, they run slower compared with other related
algorithms such as component tree. In this paper, we propose
a novel hierarchical heap priority queue algorithm that can
process α-tree edges much more efficiently than other stateof-the-art priority queues. Experimental results using 48-bit
Sentinel-2A remotely sensed images and randomly generated
images have shown that the proposed hierarchical heap priority
queue improved the timings of the flooding α-tree algorithm by
replacing the heap priority queue with the proposed queue: 1.68
times in 4-N and 2.41 times in 8-N on Sentinel-2A images, and
2.56 times and 4.43 times on randomly generated images.
such as remote sensing and medical images. Most α-tree algorithms make use of priority queues to process image edges
in a correct order, but because traditional priority queues are
inefficient in α-tree algorithms using extreme-dynamic-range
pixel dissimilarities, they run slower compared with other related
algorithms such as component tree. In this paper, we propose
a novel hierarchical heap priority queue algorithm that can
process α-tree edges much more efficiently than other stateof-the-art priority queues. Experimental results using 48-bit
Sentinel-2A remotely sensed images and randomly generated
images have shown that the proposed hierarchical heap priority
queue improved the timings of the flooding α-tree algorithm by
replacing the heap priority queue with the proposed queue: 1.68
times in 4-N and 2.41 times in 8-N on Sentinel-2A images, and
2.56 times and 4.43 times on randomly generated images.
Original language | English |
---|---|
Pages (from-to) | 3199-3212 |
Number of pages | 14 |
Journal | IEEE Transactions on Pattern Analysis and Machine Intelligence |
Volume | 46 |
Issue number | 5 |
Early online date | 12-Dec-2023 |
DOIs | |
Publication status | Published - 5-May-2024 |