## Abstract

We derive hyperbolic PDE systems for the solution of the Boltzmann Equation. First, the velocity is transformed in a non-linear way to obtain a Lagrangian velocity phase space description that allows for physical adaptivity. The unknown distribution function is then approximated by a series of basis functions.

Standard continuous projection methods for this approach yield PDE systems for the basis coefficients that are in general not hyperbolic. To overcome this problem, we apply quadrature-based projection methods which modify the structure of the system in the desired way so that we end up with a hyperbolic system of equations.

With the help of a new abstract framework, we derive conditions such that the emerging system is hyperbolic and give a proof of hyperbolicity for Hermite ansatz functions in one dimension together with Gauss-Hermite quadrature.

Standard continuous projection methods for this approach yield PDE systems for the basis coefficients that are in general not hyperbolic. To overcome this problem, we apply quadrature-based projection methods which modify the structure of the system in the desired way so that we end up with a hyperbolic system of equations.

With the help of a new abstract framework, we derive conditions such that the emerging system is hyperbolic and give a proof of hyperbolicity for Hermite ansatz functions in one dimension together with Gauss-Hermite quadrature.

Original language | English |
---|---|

Pages (from-to) | 531-549 |

Number of pages | 18 |

Journal | Kinetic & Related Models |

Volume | 7 |

Issue number | 3 |

DOIs | |

Publication status | Published - 2014 |

Externally published | Yes |

## Keywords

- Boltzmann equation
- quadrature
- hyperbolicity
- kinetic equation