A large invasive consumer reduces coastal ecosystem resilience by disabling positive species interactions

Marc J.S. Hensel*, Brian R. Silliman, Johan van de Koppel, Enie Hensel, Sean J. Sharp, Sinead M. Crotty, Jarrett E.K. Byrnes

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)
3 Downloads (Pure)

Abstract

Invasive consumers can cause extensive ecological damage to native communities but effects on ecosystem resilience are less understood. Here, we use drone surveys, manipulative experiments, and mathematical models to show how feral hogs reduce resilience in southeastern US salt marshes by dismantling an essential marsh cordgrass-ribbed mussel mutualism. Mussels usually double plant growth and enhance marsh resilience to extreme drought but, when hogs invade, switch from being essential for plant survival to a liability; hogs selectively forage in mussel-rich areas leading to a 50% reduction in plant biomass and slower post-drought recovery rate. Hogs increase habitat fragmentation across landscapes by maintaining large, disturbed areas through trampling of cordgrass during targeted mussel consumption. Experiments and climate-disturbance recovery models show trampling alone slows marsh recovery by 3x while focused mussel predation creates marshes that may never recover from large-scale disturbances without hog eradication. Our work highlights that an invasive consumer can reshape ecosystems not just via competition and predation, but by disrupting key, positive species interactions that underlie resilience to climatic disturbances.

Original languageEnglish
Article number6290
JournalNature Communications
Volume12
Issue number1
DOIs
Publication statusPublished - Dec-2021

Cite this