TY - JOUR
T1 - A Radical Mechanism for the Vanadium-Catalyzed Deoxydehydration of Glycols
AU - De Vicente Poutás, Luis Carlos
AU - Castiñeira Reis, Marta
AU - Sanz, Roberto
AU - López, Carlos Silva
AU - Faza, Olalla Nieto
PY - 2016/11/7
Y1 - 2016/11/7
N2 - We propose a novel mechanism for the deoxydehydration (DODH) reaction of glycols catalyzed by a [Bu4N][VO2(dipic)] complex (dipic = pyridine-2,6-dicarboxylate) using triphenylphosphine as a reducing agent. Using density functional theory, we have confirmed that the preferred sequence of reaction steps involves reduction of the V(V) complex by phosphine, followed by condensation of the glycol into a [VO(dipic)(-O-CH2CH2-O-)] V(III) complex (6), which then evolves to the alkene product, with recovery of the catalyst. In contrast to the usually invoked closed-shell mechanism for the latter steps, where 6 suffers a [3+2] retrocycloaddition, we have found that the homolytic cleavage of one of the C-O bonds in 6 is preferred by 12 kcal/mol. The resulting diradical intermediate then collapses to a metallacycle that evolves to the product through an aromatic [2+2] retrocycloaddition. We use this key change in the mechanism to propose ways to design better catalysts for this transformation. The analysis of the mechanisms in both singlet and triplet potential energy surfaces, together with the location of the MECPs between them, showcases this reaction as an interesting example of two-state reactivity.
AB - We propose a novel mechanism for the deoxydehydration (DODH) reaction of glycols catalyzed by a [Bu4N][VO2(dipic)] complex (dipic = pyridine-2,6-dicarboxylate) using triphenylphosphine as a reducing agent. Using density functional theory, we have confirmed that the preferred sequence of reaction steps involves reduction of the V(V) complex by phosphine, followed by condensation of the glycol into a [VO(dipic)(-O-CH2CH2-O-)] V(III) complex (6), which then evolves to the alkene product, with recovery of the catalyst. In contrast to the usually invoked closed-shell mechanism for the latter steps, where 6 suffers a [3+2] retrocycloaddition, we have found that the homolytic cleavage of one of the C-O bonds in 6 is preferred by 12 kcal/mol. The resulting diradical intermediate then collapses to a metallacycle that evolves to the product through an aromatic [2+2] retrocycloaddition. We use this key change in the mechanism to propose ways to design better catalysts for this transformation. The analysis of the mechanisms in both singlet and triplet potential energy surfaces, together with the location of the MECPs between them, showcases this reaction as an interesting example of two-state reactivity.
UR - http://www.scopus.com/inward/record.url?scp=84994558620&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.6b01916
DO - 10.1021/acs.inorgchem.6b01916
M3 - Article
AN - SCOPUS:84994558620
VL - 55
SP - 11372
EP - 11382
JO - Inorganic Chemistry
JF - Inorganic Chemistry
SN - 0020-1669
IS - 21
ER -