A rule-based approach for process discovery: Dealing with noise and imbalance in process logs

L Maruster*, AJMM Weijters, WMP Van der Aalst, Antal van den Bosch

*Corresponding author for this work

    Research output: Contribution to journalArticleAcademicpeer-review

    84 Citations (Scopus)

    Abstract

    Effective information systems require the existence of explicit process models. A completely specified process design needs to be developed in order to enact a given business process. This development is time consuming and often subjective and incomplete. We propose a method that constructs the process model from process log data, by determining the relations between process tasks. To predict these relations, we employ machine learning technique to induce rule sets. These rule sets are induced from simulated process log data generated by varying process characteristics such as noise and log size. Tests reveal that the induced rule sets have a high predictive accuracy on new data. The effects of noise and imbalance of execution priorities during the discovery of the relations between process tasks are also discussed. Knowing the causal, exclusive, and parallel relations, a process model expressed in the Petri net formalism can be built. We illustrate our approach with real world data in a case study.

    Original languageEnglish
    Pages (from-to)67-87
    Number of pages21
    JournalData Mining and Knowledge Discovery
    Volume13
    Issue number1
    DOIs
    Publication statusPublished - Jul-2006

    Keywords

    • rule induction
    • process mining
    • knowledge discovery
    • Petri nets

    Fingerprint

    Dive into the research topics of 'A rule-based approach for process discovery: Dealing with noise and imbalance in process logs'. Together they form a unique fingerprint.

    Cite this