A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization

Jasper H M van der Velde, Jens Oelerich, Jingyi Huang, Jochem H Smit, Atieh Aminian Jazi, Silvia Galiani, Kirill Kolmakov, Giorgos Guoridis, Christian Eggeling, Andreas Herrmann, Gerard Roelfes, Thorben Cordes

Research output: Contribution to journalArticleAcademicpeer-review

55 Citations (Scopus)
328 Downloads (Pure)

Abstract

Intramolecular photostabilization via triple-state quenching was recently revived as a tool to impart synthetic organic fluorophores with 'self-healing' properties. To date, utilization of such fluorophore derivatives is rare due to their elaborate multi-step synthesis. Here we present a general strategy to covalently link a synthetic organic fluorophore simultaneously to a photostabilizer and biomolecular target via unnatural amino acids. The modular approach uses commercially available starting materials and simple chemical transformations. The resulting photostabilizer-dye conjugates are based on rhodamines, carbopyronines and cyanines with excellent photophysical properties, that is, high photostability and minimal signal fluctuations. Their versatile use is demonstrated by single-step labelling of DNA, antibodies and proteins, as well as applications in single-molecule and super-resolution fluorescence microscopy. We are convinced that the presented scaffolding strategy and the improved characteristics of the conjugates in applications will trigger the broader use of intramolecular photostabilization and help to emerge this approach as a new gold standard.

Original languageEnglish
Article number10144
Number of pages15
JournalNature Communications
Volume7
DOIs
Publication statusPublished - 2016

Cite this