A Two-Step Approach for 3D-Guided Patient-Specific Corrective Limb Osteotomies

Nick Assink*, Anne M.L. Meesters, Kaj ten Duis, Jorrit S. Harbers, Frank F.A. IJpma, Hugo C. van der Veen, Job N. Doornberg, Peter A.J. Pijpker, Joep Kraeima

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

4 Downloads (Pure)

Abstract

Background: Corrective osteotomy surgery for long bone anomalies can be very challenging since deformation of the bone is often present in three dimensions. We developed a two-step approach for 3D-planned corrective osteotomies which consists of a cutting and reposition guide in combination with a conventional osteosynthesis plate. This study aimed to assess accuracy of the achieved corrections using this two-step technique.

Methods: All patients (≥12 years) treated for post-traumatic malunion with a two-step 3D-planned corrective osteotomy within our center in 2021 were prospectively included. Three-dimensional virtual models of the planned outcome and the clinically achieved outcome were obtained and aligned. Postoperative evaluation of the accuracy of performed corrections was assessed by measuring the preoperative and postoperative alignment error in terms of angulation, rotation and translation.

Results: A total of 10 patients were included. All corrective osteotomies were performed according to the predetermined surgical plan without any complications. The preoperative deformities ranged from 7.1 to 27.5° in terms of angulation and 5.3 to 26.1° in terms of rotation. The achieved alignment deviated on average 2.1 ± 1.0 and 3.4 ± 1.6 degrees from the planning for the angulation and rotation, respectively.

Conclusions: A two-step approach for 3D-guided patient-specific corrective limb osteotomies is reliable, feasible and accurate.

Original languageEnglish
Article number1458
Number of pages10
JournalJournal of personalized medicine
Volume12
Issue number9
DOIs
Publication statusPublished - 6-Sep-2022

Keywords

  • 3D printing
  • 3D technology
  • corrective osteotomy
  • malunion
  • osteotomies
  • patient-specific
  • patient-specific instruments
  • surgical guide
  • three-dimensional
  • virtual surgical planning

Cite this