Abstract
Als de code van een cijferslot zoek is, kan het alleen geopend worden door alle cijfercombinaties langs te gaan. In het slechtste geval is de laatste combinatie de juiste. Echter, als de code uit tien cijfers bestaat, moeten tien miljard mogelijkheden bekeken worden. De zogenaamde 'NP-lastige' problemen in het proefschrift van Marcel Turkensteen zijn vergelijkbaar met het 'cijferslotprobleem'. Ook bij deze problemen is het aantal mogelijkheden buitensporig groot. De kunst is derhalve om de zoekruimte op een slimme manier af te tasten. Bij de Branch and Bound (BnB) methode wordt dit gedaan door de zoekruimte op te splitsen in kleinere deelgebieden. Turkensteen past de BnB methode onder andere toe bij het handelsreizigersprobleem, waarbij een kortste route door een verzameling plaatsen bepaald moet worden. Dit probleem is in algemene vorm nog steeds niet opgelost. De economische gevolgen kunnen groot zijn: zo staat nog steeds niet vast of bijvoorbeeld een routeplanner vrachtwagens optimaal laat rondrijden. De huidige BnB-methoden worden in dit proefschrift met name verbeterd door niet naar de kosten van een verbinding te kijken, maar naar de kostentoename als een verbinding niet gebruikt wordt: de boventolerantie.
Original language | English |
---|---|
Qualification | Doctor of Philosophy |
Awarding Institution |
|
Supervisors/Advisors |
|
Award date | 15-Feb-2007 |
Publisher | |
Print ISBNs | 978-90-5335-110-9 |
Publication status | Published - 2007 |