TY - JOUR
T1 - Advancement in long-distance bird migration through individual plasticity in departure
AU - Conklin, Jesse R.
AU - Lisovski, Simeon
AU - Battley, Phil F.
N1 - Funding Information:
We thank colleagues for helpful discussions and comments on previous drafts: Christiaan Both, Bart Kempenaers, Jelle Loonstra, Theunis Piersma, Eldar Rakhimberdiev, Joost Tinbergen, Mo Verhoeven, and especially Yvonne Verkuil. We thank David Melville, Adrian Riegen, Rob Schuckard, and many volunteers for trapping and banding assistance, and Iris Bontekoe for fieldwork in 2018. The collection of long-term departure data was supported by Chris & Neville Hopkins, David & Lucile Packard Foundation, Dobberke Foundation for Comparative Psychology, Manawatu Estuary Trust, Marsden Fund (Royal Society of New Zealand), Massey University Doctoral Scholarship, New Zealand Department of Conservation, Ornithological Society of New Zealand, Pacific Shorebird Migration Project, Pūkorokoro Miranda Naturalist’s Trust, and Royal Netherlands Academy of Arts & Sciences (KNAW). We acknowledge support by the Open Access Publication Funds of Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung and of Massey University.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Globally, bird migration is occurring earlier in the year, consistent with climate-related changes in breeding resources. Although often attributed to phenotypic plasticity, there is no clear demonstration of long-term population advancement in avian migration through individual plasticity. Using direct observations of bar-tailed godwits (Limosa lapponica) departing New Zealand on a 16,000-km journey to Alaska, we show that migration advanced by six days during 2008–2020, and that within-individual advancement was sufficient to explain this population-level change. However, in individuals tracked for the entire migration (50 total tracks of 36 individuals), earlier departure did not lead to earlier arrival or breeding in Alaska, due to prolonged stopovers in Asia. Moreover, changes in breeding-site phenology varied across Alaska, but were not reflected in within-population differences in advancement of migratory departure. We demonstrate that plastic responses can drive population-level changes in timing of long-distance migration, but also that behavioral and environmental constraints en route may yet limit adaptive responses to global change.
AB - Globally, bird migration is occurring earlier in the year, consistent with climate-related changes in breeding resources. Although often attributed to phenotypic plasticity, there is no clear demonstration of long-term population advancement in avian migration through individual plasticity. Using direct observations of bar-tailed godwits (Limosa lapponica) departing New Zealand on a 16,000-km journey to Alaska, we show that migration advanced by six days during 2008–2020, and that within-individual advancement was sufficient to explain this population-level change. However, in individuals tracked for the entire migration (50 total tracks of 36 individuals), earlier departure did not lead to earlier arrival or breeding in Alaska, due to prolonged stopovers in Asia. Moreover, changes in breeding-site phenology varied across Alaska, but were not reflected in within-population differences in advancement of migratory departure. We demonstrate that plastic responses can drive population-level changes in timing of long-distance migration, but also that behavioral and environmental constraints en route may yet limit adaptive responses to global change.
UR - http://www.scopus.com/inward/record.url?scp=85112624557&partnerID=8YFLogxK
U2 - 10.1038/s41467-021-25022-7
DO - 10.1038/s41467-021-25022-7
M3 - Article
C2 - 34362899
AN - SCOPUS:85112624557
SN - 2041-1723
VL - 12
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 4780
ER -