Advances in Microfluidic Synthesis of Solid Catalysts

Huihui Chen, Zhenhua Dong, Jun Yue*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Heterogeneous catalysis plays a central role in the chemical and energy fields, owing to the high and tunable activities of solid catalysts that are essential to achieve the favorable reaction process efficiency, and their ease of recycle and reuse. Numerous research efforts have been focused on the synthesis of solid catalysts towards obtaining the desired structure, property and catalytic performance. The emergence and development of microfluidic reactor technology provide a new and attractive platform for the controllable synthesis of solid catalysts, primarily because of its superior mixing performance and high heat/mass transfer efficiency. In this review, the recent research progress on the synthesis of solid catalysts based on microfluidic reactor technology is summarized. The first section deals with the synthesis strategies for solid catalysts, including conventional methods in batch reactors and microfluidic alternatives (based on single- and two-phase flow processing). Then, different kinds of solid catalysts synthesized in microflow are discussed, especially with regard to the catalyst type, synthetic process, structure and property, and catalytic performance. Finally, challenges in the microreactor operation and scale-up, as well as future perspectives in terms of the synthesis of more types of catalysts, catalyst performance improvement, and the combination of catalyst synthesis process and catalytic reaction in microreactors, are provided.
Original languageEnglish
Pages (from-to)155-183
Number of pages29
JournalPowders
Volume1
Issue number3
DOIs
Publication statusPublished - 16-Aug-2022

Keywords

  • microfluidic
  • microreactor
  • solid catalyst
  • catalyst synthesis
  • heterogeneous catalysis

Cite this