TY - JOUR
T1 - Alleviating the Cold Start Problem in Adaptive Learning using Data-Driven Difficulty Estimates
AU - van der Velde, Maarten
AU - Sense, Florian
AU - Borst, Jelmer
AU - van Rijn, Hedderik
N1 - Funding Information:
An earlier version of the adaptive learning system discussed in this manuscript is licensed to Noordhoff Publishers by the University of Groningen. This project was partially funded by these license fees. However, the publishing house had no involvement in this study.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/6
Y1 - 2021/6
N2 - An adaptive learning system offers a digital learning environment that adjusts itself to the individual learner and learning material. By refining its internal model of the learner and material over time, such a system continually improves its ability to present appropriate exercises that maximise learning gains. In many cases, there is an initial mismatch between the internal model and the learner’s actual performance on the presented items, causing a “cold start” during which the system is poorly adjusted to the situation. In this study, we implemented several strategies for mitigating this cold start problem in an adaptive fact learning system and experimentally tested their effect on learning performance. The strategies included predicting difficulty for individual learner-fact pairs, individual learners, individual facts, and the set of facts as a whole. We found that cold start mitigation improved learning outcomes, provided that there was sufficient variability in the difficulty of the study material. Informed individualised predictions allowed the system to schedule learners’ study time more effectively, leading to an increase in response accuracy during the learning session as well as improved retention of the studied items afterwards. Our findings show that addressing the cold start problem in adaptive learning systems can have a real impact on learning outcomes. We expect this to be particularly valuable in real-world educational settings with large individual differences between learners and highly diverse materials.
AB - An adaptive learning system offers a digital learning environment that adjusts itself to the individual learner and learning material. By refining its internal model of the learner and material over time, such a system continually improves its ability to present appropriate exercises that maximise learning gains. In many cases, there is an initial mismatch between the internal model and the learner’s actual performance on the presented items, causing a “cold start” during which the system is poorly adjusted to the situation. In this study, we implemented several strategies for mitigating this cold start problem in an adaptive fact learning system and experimentally tested their effect on learning performance. The strategies included predicting difficulty for individual learner-fact pairs, individual learners, individual facts, and the set of facts as a whole. We found that cold start mitigation improved learning outcomes, provided that there was sufficient variability in the difficulty of the study material. Informed individualised predictions allowed the system to schedule learners’ study time more effectively, leading to an increase in response accuracy during the learning session as well as improved retention of the studied items afterwards. Our findings show that addressing the cold start problem in adaptive learning systems can have a real impact on learning outcomes. We expect this to be particularly valuable in real-world educational settings with large individual differences between learners and highly diverse materials.
KW - ACT-R
KW - Adaptive fact learning
KW - Bayesian modelling
KW - Cold start problem
KW - Memory
UR - http://www.scopus.com/inward/record.url?scp=85102778506&partnerID=8YFLogxK
U2 - 10.1007/s42113-021-00101-6
DO - 10.1007/s42113-021-00101-6
M3 - Article
AN - SCOPUS:85102778506
SN - 2522-087X
VL - 4
SP - 231
EP - 249
JO - Computational Brain and Behavior
JF - Computational Brain and Behavior
IS - 2
ER -