TY - JOUR
T1 - An exploration of the electrocatalytic activity of nickel boride nanocrystals in the oxidation of 5-HMF
AU - Hong, Jennifer
AU - Miola, Matteo
AU - Gerlach, Dominic
AU - Stuart, Marc C.A.
AU - Rudolf, Petra
AU - Morales, Dulce M.
AU - Protesescu, Loredana
AU - Pescarmona, Paolo P.
N1 - Publisher Copyright:
© 2025 The Royal Society of Chemistry.
PY - 2025/1/21
Y1 - 2025/1/21
N2 - In this work, we investigated the inherent electrocatalytic activity of nickel borides in an important reaction in the context of electrochemical valorization of biomass as the oxidation of hydroxymethylfurfural (5-HMF) to furan dicarboxylic acid (FDCA). For this purpose, nickel borides (NixB, x = 2 and 3) in the form of phase-pure nanocrystals (NCs) were synthesized through a solid-state synthesis method, supported on carbon paper and then tested as electrocatalysts for the oxidation of hydroxymethylfurfural (pH 12.9 or 13.9, 1.8 V vs. RHE, 3 h) by comparing their activity to that of Ni nanocrystals of similar average particle size (36-39 nm). Ni3B NCs achieved the highest 5-HMF conversion and Faradaic efficiency towards 5-HMF oxidation (Conv.5-HMF = 70%, FE = 94%), which is a markedly better performance compared to Ni2B NCs (Conv.5-HMF = 57%, FE = 72%) and to Ni nanoparticles (Conv.5-HMF = 58%, FE = 65%), thus unequivocally demonstrating for the first time the superior activity brought about by Ni3B. Based on a combination of physicochemical and electrochemical characterization (XPS, SEM, TEM, Cdl analysis), the better performance of the Ni3B-based electrocatalyst is attributed to differences in surface composition compared to the Ni2B-based electrocatalyst and to differences in terms of electrochemical surface area and/or bulk chemical features compared to the Ni-based electrocatalyst. Notably, these results were achieved with a remarkably low electrocatalyst loading (0.05 mg cm−2), leading to significantly higher turnover frequency compared to state-of-the-art nickel boride electrocatalysts for this reaction. A kinetic study showed that NixB NCs catalyze the electrosynthesis of FDCA from 5-HMF both through a direct and indirect mechanism, with the contribution of each changing as a function of the pH of the electrolyte.
AB - In this work, we investigated the inherent electrocatalytic activity of nickel borides in an important reaction in the context of electrochemical valorization of biomass as the oxidation of hydroxymethylfurfural (5-HMF) to furan dicarboxylic acid (FDCA). For this purpose, nickel borides (NixB, x = 2 and 3) in the form of phase-pure nanocrystals (NCs) were synthesized through a solid-state synthesis method, supported on carbon paper and then tested as electrocatalysts for the oxidation of hydroxymethylfurfural (pH 12.9 or 13.9, 1.8 V vs. RHE, 3 h) by comparing their activity to that of Ni nanocrystals of similar average particle size (36-39 nm). Ni3B NCs achieved the highest 5-HMF conversion and Faradaic efficiency towards 5-HMF oxidation (Conv.5-HMF = 70%, FE = 94%), which is a markedly better performance compared to Ni2B NCs (Conv.5-HMF = 57%, FE = 72%) and to Ni nanoparticles (Conv.5-HMF = 58%, FE = 65%), thus unequivocally demonstrating for the first time the superior activity brought about by Ni3B. Based on a combination of physicochemical and electrochemical characterization (XPS, SEM, TEM, Cdl analysis), the better performance of the Ni3B-based electrocatalyst is attributed to differences in surface composition compared to the Ni2B-based electrocatalyst and to differences in terms of electrochemical surface area and/or bulk chemical features compared to the Ni-based electrocatalyst. Notably, these results were achieved with a remarkably low electrocatalyst loading (0.05 mg cm−2), leading to significantly higher turnover frequency compared to state-of-the-art nickel boride electrocatalysts for this reaction. A kinetic study showed that NixB NCs catalyze the electrosynthesis of FDCA from 5-HMF both through a direct and indirect mechanism, with the contribution of each changing as a function of the pH of the electrolyte.
UR - http://www.scopus.com/inward/record.url?scp=85211598394&partnerID=8YFLogxK
U2 - 10.1039/d4cy01220h
DO - 10.1039/d4cy01220h
M3 - Article
AN - SCOPUS:85211598394
SN - 2044-4753
VL - 15
SP - 457
EP - 475
JO - Catalysis Science and Technology
JF - Catalysis Science and Technology
IS - 2
ER -