Apertif 1.4 GHz continuum observations of the Boötes field and their combined view with LOFAR

A. M. Kutkin, T. A. Oosterloo, R. Morganti, A. R. Offringa, E. A.K. Adams, B. Adebahr, H. Dénes, K. M. Hess, J. M. Van Der Hulst, W. J.G. De Blok, A. Bozkurt, W. A. Van Cappellen, A. W. Gunst, H. A. Holties, J. Van Leeuwen, G. M. Loose, L. C. Oostrum, D. Vohl, S. J. Wijnholds, J. Ziemke

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)
10 Downloads (Pure)

Abstract

We present a new image of a 26.5 square degrees region in the Boötes constellation obtained at 1.4 GHz using the Aperture Tile in Focus (Apertif) system on the Westerbork Synthesis Radio Telescope. We use a newly developed processing pipeline that includes direction-dependent self-calibration, which provides a significant improvement in the quality of the images compared to those released as part of the Apertif first data release. For the Boötes region, we mosaicked 187 Apertif images and extracted a source catalog. The mosaic image has an angular resolution of 27 × 11.5″ and a median background noise of 40 μJy beam-1. The catalog has 8994 sources and is complete down to the 0.3 mJy level. We combined the Apertif image with LOFAR images of the Boötes field at 54 and 150 MHz to study the spectral properties of the sources. We find a spectral flattening toward sources with a low flux density. Using the spectral index limits from Apertif nondetections, we derive that up to 9% of the sources have ultrasteep spectra with a slope below -1.2. A steepening of the spectral index with increasing redshift is also seen in the data, which shows a different dependence for the low-and high-frequency spectral index. The explanation probably is that a population of sources has concave radio spectra with a turnover frequency of about the LOFAR band. Additionally, we discuss cases of individual extended sources with an interesting resolved spectral structure. With the improved pipeline, we aim to continue to process data from the Apertif wide-area surveys and release the improved 1.4-GHz images of several well-known fields.

Original languageEnglish
Article numberA37
Number of pages13
JournalAstronomy and Astrophysics
Volume676
DOIs
Publication statusPublished - Aug-2023

Keywords

  • Catalogs
  • Radio continuum: general
  • Surveys

Fingerprint

Dive into the research topics of 'Apertif 1.4 GHz continuum observations of the Boötes field and their combined view with LOFAR'. Together they form a unique fingerprint.

Cite this