Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq)

Dig Bijay Mahat, Hojoong Kwak, Gregory T. Booth, Iris H. Jonkers, Charles G. Danko, Ravi K. Patel, Colin T. Waters, Katie Munson, Leighton J. Core, John T. Lis

    Research output: Contribution to journalArticleAcademicpeer-review

    320 Citations (Scopus)

    Abstract

    We provide a protocol for precision nuclear run-on sequencing (PRO-seq) and its variant, PRO-cap, which map the location of active RNA polymerases (PRO-seq) or transcription start sites (TSSs) (PRO-cap) genome-wide at high resolution. The density of RNA polymerases at a particular genomic locus directly reflects the level of nascent transcription at that region. Nuclei are isolated from cells and, under nuclear run-on conditions, transcriptionally engaged RNA polymerases incorporate one or, at most, a few biotin-labeled nucleotide triphosphates (biotin-NTPs) into the 3' end of nascent RNA. The biotin-labeled nascent RNA is used to prepare sequencing libraries, which are sequenced from the 3' end to provide high-resolution positional information for the RNA polymerases. PRO-seq provides much higher sensitivity than ChIP-seq, and it generates a much larger fraction of usable sequence reads than ChIP-seq or NET-seq (native elongating transcript sequencing). Similarly to NET-seq, PRO-seq maps the RNA polymerase at up to base-pair resolution with strand specificity, but unlike NET-seq it does not require immunoprecipitation. With the protocol provided here, PRO-seq (or PRO-cap) libraries for high-throughput sequencing can be generated in 4-5 working days. The method has been applied to human, mouse, Drosophila melanogaster and Caenorhabditis elegans cells and, with slight modifications, to yeast.

    Original languageEnglish
    Pages (from-to)1455-1476
    Number of pages22
    JournalNature protocols
    Volume11
    Issue number8
    DOIs
    Publication statusPublished - Aug-2016

    Keywords

    • TRANSCRIPTIONAL ELONGATION
    • NUCLEOTIDE RESOLUTION
    • IN-VIVO
    • PROMOTERS
    • ENHANCERS
    • INITIATION
    • MECHANISMS
    • CELLS
    • BINDING
    • FORMAT

    Fingerprint

    Dive into the research topics of 'Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq)'. Together they form a unique fingerprint.

    Cite this