Biobased Chemicals: 1,2,4-Benzenetriol, Selective Deuteration and Dimerization to Bifunctional Aromatic Compounds

Caelan Randolph, Ciaran W. Lahive, Selim Sami, Remco W. A. Havenith, Hero J. Heeres, Peter J. Deuss*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

14 Citations (Scopus)
316 Downloads (Pure)


1,2,4-Benzenetriol (BTO), sourced from the carbohydrate-derived platform chemical 5-hydroxylmethylfurfural (HMF), is an interesting starting point for the synthesis of various biobased aromatic products. However, BTO readily undergoes dimerization and other reactions under mild conditions, making analysis and isolation challenging. To both control and utilize the reactivity of BTO to produce biobased building blocks, its reactivity needs to be better understood. Here it was found that specific BTO aromatic C-H bonds are reactive toward deuterium exchange with D2O, which appears pronounced under acidic conditions at room temperature and can lead to the selective formation of BTO with an aromatic ring that contains one or two deuterium atoms, the first at the five and the second at the three position. By exposure to air, it was shown that BTO forms a 5,5'-linked BTO dimer [1,1'-biphenyl]-2,2',4,4',5,5'-hexaol (1) and subsequently a hydroxyquinone containing dimeric structure 2',4,4',5'-tetrahydroxy-[1,1'-biphenyl]-2,5-dione (2). Additionally, condensed dimer dibenzo[b,d]furan-2,3,7,8-tetraol (3) can be relatively easily accessed. The controlled formation of these symmetric and asymmetric multifunctional dimers illustrates diverse possibilities for BTO to be converted to valuable biobased aromatic compounds. Deuterium exchange was attributed to electrophilic aromatic substitution because this reactivity was found to be independent of oxygen and acid mediated. On the contrary, the dimerization was dependent on the presence of oxygen and thus likely involves radical intermediates. Thus this report overall displays different accessible reaction pathways for BTO that can be exploited for the production of BTO-derived compounds.

Original languageEnglish
Pages (from-to)1663-1671
Number of pages9
JournalOrganic Process Research & Development
Issue number12
Publication statusPublished - Dec-2018
Event27th Meeting of the Organic-Reactions-Catalysis-Society (ORCS) - San Diego, Canada
Duration: 8-Apr-201812-Apr-2018


  • biobased chemicals
  • dimerization
  • hydroxybenzenes
  • deuteration
  • hydroxyquinone
  • ACID

Cite this