Bispecific Antibody Approach for Improved Melanoma-Selective PD-L1 Immune Checkpoint Blockade

Research output: Contribution to journalArticleAcademicpeer-review

7 Citations (Scopus)
66 Downloads (Pure)


Reactivation of functionally-impaired anticancer T cells by programmed cell death protein 1 (PD-1) and programmed cell death receptor ligand-1 (PD-L1)-blocking antibodies shows prominent therapeutic benefit in advanced melanoma and patients with non-small cell lung cancer. However, current PD-L1-blocking antibodies lack intrinsic tumor selectivity. Therefore, efficacy may be reduced resulting from on-target and off-tumor binding to PD-L1-expressing normal cells. This may lead to indiscriminate activation of antigen-xperienced T cells, including those implicated in autoimmune-related adverse events. To direct PD-L1 blockade to chondroitin sulfate proteoglycan 4 (CSPG4)-expressing cancers and to reactivate anticancer T cells more selectively, we constructed bispecific antibody PD-L1xCSPG4. CSPG4 is an established target antigen that is selectively overexpressed on malignant melanoma and various other difficult-to-treat cancers. PD-L1xCSPG4 showed enhanced capacity for CSPG4-directed blockade of PD-L1 on cancer cells. Importantly, treatment of mixed cultures containing primary patient-derived CSPG4-expressing melanoma cells and autologous tumor-infiltrating lymphocytes with PD-L1xCSPG4 significantly enhanced activation status, IFN-gamma production, and cytolytic activity of anticancer T cells. In conclusion, tumor-directed blockade of PD-L1 by PD-L1xCSPG4 may improve efficacy and safety of PD-1/PD-L1 checkpoint blockade for treatment of melanoma and other CSPG4-overexpressing malignancies.

Original languageEnglish
Pages (from-to)2343-+
Number of pages12
JournalJournal of Investigative Dermatology
Issue number11
Early online date23-May-2019
Publication statusPublished - Nov-2019


  • CSPG4

Cite this