Abstract
We have combined Cu K-edge X-ray absorption spectroscopy with NMR spectroscopy (1H and 31P) to study the Cu-catalyzed azide–alkyne cycloaddition (CuAAC) reaction under operando conditions. A variety of novel, well-defined CuI iminophosphorane complexes were prepared. These ligands, based on the in situ Staudinger reduction when [Cu(PPh3)3Br] is employed, were found to be active catalysts in the CuAAC reaction. Here, we highlight recent advances in mechanistic understanding of the CuAAC reaction using spectroscopic and kinetic investigations under strict air-free and operando conditions. A mononuclear Cu triazolide intermediate is identified to be the resting state during catalysis; cyclization and protonation both have an effect on the rate of the reaction. A key finding of this study includes a novel group of highly modular CuI complexes that are active in the base-free CuAAC reaction.
Original language | English |
---|---|
Pages (from-to) | 3480-3489 |
Number of pages | 10 |
Journal | Organometallics |
Volume | 39 |
Issue number | 19 |
Early online date | 30-Sep-2020 |
DOIs | |
Publication status | Published - 12-Oct-2020 |