TY - UNPB
T1 - Characterization of a continuous muon source for the Muon-Induced X-ray Emission (MIXE) Technique
AU - Biswas, Sayani
AU - Gerchow, Lars
AU - Luetkens, Hubertus
AU - Prokscha, Thomas
AU - Antognini, Aldo
AU - Berger, Niklaus
AU - Cocolios, Thomas Elias
AU - Dressler, Rugard
AU - Indelicato, Paul
AU - Jungmann, Klaus
AU - Kirch, Klaus
AU - Knecht, Andreas
AU - Papa, Angela
AU - Pohl, Randolf
AU - Pospelov, Maxim
AU - Rapisarda, Elisa
AU - Reiter, Peter
AU - Ritjoho, Narongrit
AU - Roccia, Stephanie
AU - Severijns, Nathal
AU - Skawran, Alexander
AU - Vogiatzi, Stergiani Marina
AU - Wauters, Frederik
AU - Willmann, Lorenz
AU - Amato, Alex
PY - 2022/2/8
Y1 - 2022/2/8
N2 - The toolbox for material characterization has never been richer than today. Great progress with all kinds of particles and interaction methods provide access to nearly all properties of an object under study. However, a tomographic analysis of the subsurface region remains still a challenge today. In this regard, the Muon-Induced X-ray Emission (MIXE) technique has seen rebirth fueled by the availability of high intensity muon beams. We report here a study conducted at the Paul Scherrer Institute (PSI). It demonstrates that the absence of any beam time-structure leads to low pile-up events and a high signal-to-noise ratio (SNR) with less than one hour acquisition time per sample or data point. This performance creates the perspective to open this technique to a wider audience for the routine investigation of non-destructive and depth-sensitive elemental compositions, for example in rare and precious samples. Using a hetero-structured sample of known elements and thicknesses, we successfully detected the characteristic muonic X-rays, emitted during the capture of a negative muon by an atom, and the gamma-rays resulting from the nuclear capture of the muon, characterizing the capabilities of MIXE at PSI. This sample emphasizes the quality of a continuous beam, and the exceptional SNR at high rates. Such sensitivity will enable totally new statistically intense aspects in the field of MIXE, e.g. elemental 3D-tomography and chemical analysis. Therefore, we are currently advancing our proof-of-concept experiments with the goal of creating a full fledged permanently operated user station to make MIXE available to the wider scientific community as well as industry.
AB - The toolbox for material characterization has never been richer than today. Great progress with all kinds of particles and interaction methods provide access to nearly all properties of an object under study. However, a tomographic analysis of the subsurface region remains still a challenge today. In this regard, the Muon-Induced X-ray Emission (MIXE) technique has seen rebirth fueled by the availability of high intensity muon beams. We report here a study conducted at the Paul Scherrer Institute (PSI). It demonstrates that the absence of any beam time-structure leads to low pile-up events and a high signal-to-noise ratio (SNR) with less than one hour acquisition time per sample or data point. This performance creates the perspective to open this technique to a wider audience for the routine investigation of non-destructive and depth-sensitive elemental compositions, for example in rare and precious samples. Using a hetero-structured sample of known elements and thicknesses, we successfully detected the characteristic muonic X-rays, emitted during the capture of a negative muon by an atom, and the gamma-rays resulting from the nuclear capture of the muon, characterizing the capabilities of MIXE at PSI. This sample emphasizes the quality of a continuous beam, and the exceptional SNR at high rates. Such sensitivity will enable totally new statistically intense aspects in the field of MIXE, e.g. elemental 3D-tomography and chemical analysis. Therefore, we are currently advancing our proof-of-concept experiments with the goal of creating a full fledged permanently operated user station to make MIXE available to the wider scientific community as well as industry.
KW - physics.app-ph
U2 - 10.48550/arXiv.2202.03912
DO - 10.48550/arXiv.2202.03912
M3 - Preprint
BT - Characterization of a continuous muon source for the Muon-Induced X-ray Emission (MIXE) Technique
PB - arXiv
ER -