TY - JOUR
T1 - Characterization of the Gene Cluster Involved in Isoprene Metabolism in Rhodococcus sp. Strain AD45
AU - van Hylckama Vlieg, Johan E.T.
AU - Leemhuis, Hans
AU - Lutje Spelberg, Jeffrey H.
AU - Janssen, Dick B.
N1 - Relation: http://www.rug.nl/gbb/
date_submitted:2009
Rights: University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute
PY - 2000
Y1 - 2000
N2 - The genes involved in isoprene (2-methyl-1,3-butadiene) utilization in Rhodococcus sp. strain AD45 were cloned and characterized. Sequence analysis of an 8.5-kb DNA fragment showed the presence of 10 genes of which 2 encoded enzymes which were previously found to be involved in isoprene degradation: a glutathione S-transferase with activity towards 1,2-epoxy-2-methyl-3-butene (isoI) and a 1-hydroxy-2-glutathionyl-2-methyl-3-butene dehydrogenase (isoH). Furthermore, a gene encoding a second glutathione S-transferase was identified (isoJ). The isoJ gene was overexpressed in Escherichia coli and was found to have activity with 1-chloro-2,4-dinitrobenzene and 3,4-dichloro-1-nitrobenzene but not with 1,2-epoxy-2-methyl-3-butene. Downstream of isoJ, six genes (isoABCDEF) were found; these genes encoded a putative alkene monooxygenase that showed high similarity to components of the alkene monooxygenase from Xanthobacter sp. strain Py2 and other multicomponent monooxygenases. The deduced amino acid sequence encoded by an additional gene (isoG) showed significant similarity with that of α-methylacyl-coenzyme A racemase. The results are in agreement with a catabolic route for isoprene involving epoxidation by a monooxygenase, conjugation to glutathione, and oxidation of the hydroxyl group to a carboxylate. Metabolism may proceed by fatty acid oxidation after removal of glutathione by a still-unknown mechanism.
AB - The genes involved in isoprene (2-methyl-1,3-butadiene) utilization in Rhodococcus sp. strain AD45 were cloned and characterized. Sequence analysis of an 8.5-kb DNA fragment showed the presence of 10 genes of which 2 encoded enzymes which were previously found to be involved in isoprene degradation: a glutathione S-transferase with activity towards 1,2-epoxy-2-methyl-3-butene (isoI) and a 1-hydroxy-2-glutathionyl-2-methyl-3-butene dehydrogenase (isoH). Furthermore, a gene encoding a second glutathione S-transferase was identified (isoJ). The isoJ gene was overexpressed in Escherichia coli and was found to have activity with 1-chloro-2,4-dinitrobenzene and 3,4-dichloro-1-nitrobenzene but not with 1,2-epoxy-2-methyl-3-butene. Downstream of isoJ, six genes (isoABCDEF) were found; these genes encoded a putative alkene monooxygenase that showed high similarity to components of the alkene monooxygenase from Xanthobacter sp. strain Py2 and other multicomponent monooxygenases. The deduced amino acid sequence encoded by an additional gene (isoG) showed significant similarity with that of α-methylacyl-coenzyme A racemase. The results are in agreement with a catabolic route for isoprene involving epoxidation by a monooxygenase, conjugation to glutathione, and oxidation of the hydroxyl group to a carboxylate. Metabolism may proceed by fatty acid oxidation after removal of glutathione by a still-unknown mechanism.
KW - GLUTATHIONE TRANSFERASES
KW - ESCHERICHIA-COLI
KW - ENCODING TOLUENE-4-MONOOXYGENASE
KW - ALKENE MONOOXYGENASE
KW - NUCLEOTIDE-SEQUENCE
KW - CRYSTAL-STRUCTURES
KW - EPOXIDE HYDROLASE
KW - ACTIVE-SITE
KW - EXPRESSION
KW - CLONING
UR - http://irs.ub.rug.nl/dbi/49917bc4e9cae
U2 - 10.1128/JB.182.7.1956-1963.2000
DO - 10.1128/JB.182.7.1956-1963.2000
M3 - Article
VL - 182
SP - 1956
EP - 1963
JO - Journal of Bacteriology
JF - Journal of Bacteriology
IS - 7
ER -