Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer

Wigard P Kloosterman, Marlous Hoogstraat, Oscar Paling, Masoumeh Tavakoli-Yaraki, Ivo Renkens, Joost S Vermaat, Markus J van Roosmalen, Stef van Lieshout, Isaac J Nijman, Wijnand Roessingh, Ruben van 't Slot, José van de Belt, Victor Guryev, Marco Koudijs, Emile Voest, Edwin Cuppen

Research output: Contribution to journalArticleAcademicpeer-review

120 Citations (Scopus)
69 Downloads (Pure)


BACKGROUND: Structural rearrangements form a major class of somatic variation in cancer genomes. Local chromosome shattering, termed chromothripsis, is a mechanism proposed to be the cause of clustered chromosomal rearrangements and was recently described to occur in a small percentage of tumors. The significance of these clusters for tumor development or metastatic spread is largely unclear.

RESULTS: We used genome-wide long mate-pair sequencing and SNP array profiling to reveal that chromothripsis is a widespread phenomenon in primary colorectal cancer and metastases. We find large and small chromothripsis events in nearly every colorectal tumor sample and show that several breakpoints of chromothripsis clusters and isolated rearrangements affect cancer genes, including NOTCH2, EXO1 and MLL3. We complemented the structural variation studies by sequencing the coding regions of a cancer exome in all colorectal tumor samples and found somatic mutations in 24 genes, including APC, KRAS, SMAD4 and PIK3CA. A pairwise comparison of somatic variations in primary and metastatic samples indicated that many chromothripsis clusters, isolated rearrangements and point mutations are exclusively present in either the primary tumor or the metastasis and may affect cancer genes in a lesion-specific manner.

CONCLUSIONS: We conclude that chromothripsis is a prevalent mechanism driving structural rearrangements in colorectal cancer and show that a complex interplay between point mutations, simple copy number changes and chromothripsis events drive colorectal tumor development and metastasis.

Original languageEnglish
Pages (from-to)R103
JournalGenome Biology
Issue number10
Publication statusPublished - 2011
Externally publishedYes


  • Case-Control Studies
  • Chromosome Aberrations
  • Chromosomes, Human
  • Colorectal Neoplasms
  • Computational Biology
  • DNA Repair Enzymes
  • DNA, Neoplasm
  • DNA-Binding Proteins
  • Exodeoxyribonucleases
  • Female
  • Gene Dosage
  • Gene Frequency
  • Gene Rearrangement
  • Genes, Neoplasm
  • Humans
  • Liver Neoplasms
  • Male
  • Point Mutation
  • Polymorphism, Single Nucleotide
  • Receptor, Notch2

Cite this