Ciprofloxacin-Loaded, pH-Responsive PAMAM-Megamers Functionalized with S-Nitrosylated Hyaluronic Acid Support Infected Wound Healing in Mice without Inducing Antibiotic Resistance

Guimei Jiang, Renfei Wu, Sidi Liu, Tianrong Yu, Yijin Ren, Henk J. Busscher*, Henny C. van der Mei*, Jian Liu

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

4 Citations (Scopus)
54 Downloads (Pure)

Abstract

Antimicrobial-resistant bacterial infections threaten to become the number one cause of death by the year 2050. Since the speed at which antimicrobial-resistance develops is exceeding the pace at which new antimicrobials come to the market, this threat cannot be countered by making more, new and stronger antimicrobials. Promising new antimicrobials should not only kill antimicrobial-resistant bacteria, but also prevent development of new bacterial resistance mechanisms in strains still susceptible. Here, PAMAM-dendrimers are clustered using glutaraldehyde to form megamers that are core-loaded with ciprofloxacin and functionalized with HA-SNO. Megamers are enzymatically disintegrated in an acidic pH, as in infectious biofilms, yielding release of ciprofloxacin and NO-generation by HA-SNO. NO-generation does not contribute to the killing of planktonic Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa, but in a biofilm-mode of growth short-lived NO-assisted killing of both ciprofloxacin-susceptible and ciprofloxacin-resistant bacterial strains by the ciprofloxacin released. Repeated sub-culturing of ciprofloxacin-susceptible bacteria in presence of ciprofloxacin-loaded and HA-SNO functionalized PAMAM-megamers does not result in ciprofloxacin-resistant variants as does repeated culturing in presence of ciprofloxacin. Healing of wounds infected by a ciprofloxacin-resistant S. aureus variant treated with ciprofloxacin-loaded, HA-SNO functionalized megamers proceed faster through NO-assisted ciprofloxacin killing of infecting bacteria and stimulation of angiogenesis.

Original languageEnglish
Article number2301747
Number of pages13
JournalAdvanced healthcare materials
Volume13
Issue number3
DOIs
Publication statusPublished - 26-Jan-2024

Keywords

  • angiogenesis
  • antibiotic-resistance
  • biofilm
  • ciprofloxacin
  • dendrimers
  • nitric oxide
  • staphylococcus aureus

Fingerprint

Dive into the research topics of 'Ciprofloxacin-Loaded, pH-Responsive PAMAM-Megamers Functionalized with S-Nitrosylated Hyaluronic Acid Support Infected Wound Healing in Mice without Inducing Antibiotic Resistance'. Together they form a unique fingerprint.

Cite this