TY - JOUR
T1 - Clinical and Biological Implications of Mutational Spectrum in Acute Myeloid Leukemia of FAB Subtypes M0 and M1
AU - Cheng, Zhiheng
AU - Dai, Yifeng
AU - Pang, Yifan
AU - Jiao, Yang
AU - Zhao, Hongmian
AU - Wu, Sun
AU - Zhang, Lingxiu
AU - Zhang, Yuan
AU - Wang, Xiufeng
AU - Wang, Lihua
AU - Ma, Dong
AU - Qin, Tong
AU - Hu, Ning
AU - Zhang, Yijie
AU - Hu, Kai
AU - Zhang, Qingyi
AU - Shi, Jinlong
AU - Fu, Lin
PY - 2018
Y1 - 2018
N2 - Background/Aims: Acute myeloid leukemia (AML) of French-American-British (FAB) subtypes M0 and M1 are both poorly differentiated AML, but their mutational spectrum and molecular characteristics remain unknown. This study aimed to explore the mutational spectrum and prognostic factors of AML-M0 and M1. Methods: Sixty-five AML patients derived from The Cancer Genome Atlas (TCGA) database were enrolled in this study. Whole-genome sequencing was performed to depict the mutational spectrum of each patient. Clinical characteristics at diagnosis, including peripheral blood (PB) white blood cell counts (WBC), blast percentages in PB and bone marrow (BM), FAB subtypes and the frequencies of known recurrent genetic mutations were described. Survival was estimated using the Kaplan-Meier methods and log-rank test. Univariate and multivariate Cox proportional hazard models were constructed procedure. Results: Forty-six patients had more than five recurrent genetic mutations. FLT3 had the highest mutation frequency (n=20, 31%), followed by NPM1 (n=18, 28%), DNMT3A (n=16, 25%), IDH1 (n=14, 22%), IDH2 (n=12, 18%), RUNX1 (n=11, 17%) and TET2 (n=7, 11%). Univariate analysis showed that age >= 60 years and TP53 mutations had adverse effect on EFS (P=0.015, P=0.036, respectively) and OS (P=0.003, P=0.004, respectively), WBC count >= 50x10(9)/L and FLT3-ITD negatively affected EFS (P=0.003, P=0.034, respectively), whereas NPM1 mutations had favorable effect on OS (P=0.035) and allogeneic hematopoietic stem cell transplantation (allo-HSCT) on EFS and OS (all P= 50x10(9)/L was an independent risk factor for EFS (P=0.002) and TP53 mutations for OS (P=0.043). Conclusions: Our study provided new insights into the mutational spectrum and molecular signatures of AML-M0 and M1. We proposed that FLT3-ITD, NPM1 and TP53 be identified as markers for risk stratification of AML-M0 and M1. Patients with AML-M0 and M1 would likely benefit from allo-HSCT. (C) 2018 The Author(s) Published by S. Karger AG, Basel
AB - Background/Aims: Acute myeloid leukemia (AML) of French-American-British (FAB) subtypes M0 and M1 are both poorly differentiated AML, but their mutational spectrum and molecular characteristics remain unknown. This study aimed to explore the mutational spectrum and prognostic factors of AML-M0 and M1. Methods: Sixty-five AML patients derived from The Cancer Genome Atlas (TCGA) database were enrolled in this study. Whole-genome sequencing was performed to depict the mutational spectrum of each patient. Clinical characteristics at diagnosis, including peripheral blood (PB) white blood cell counts (WBC), blast percentages in PB and bone marrow (BM), FAB subtypes and the frequencies of known recurrent genetic mutations were described. Survival was estimated using the Kaplan-Meier methods and log-rank test. Univariate and multivariate Cox proportional hazard models were constructed procedure. Results: Forty-six patients had more than five recurrent genetic mutations. FLT3 had the highest mutation frequency (n=20, 31%), followed by NPM1 (n=18, 28%), DNMT3A (n=16, 25%), IDH1 (n=14, 22%), IDH2 (n=12, 18%), RUNX1 (n=11, 17%) and TET2 (n=7, 11%). Univariate analysis showed that age >= 60 years and TP53 mutations had adverse effect on EFS (P=0.015, P=0.036, respectively) and OS (P=0.003, P=0.004, respectively), WBC count >= 50x10(9)/L and FLT3-ITD negatively affected EFS (P=0.003, P=0.034, respectively), whereas NPM1 mutations had favorable effect on OS (P=0.035) and allogeneic hematopoietic stem cell transplantation (allo-HSCT) on EFS and OS (all P= 50x10(9)/L was an independent risk factor for EFS (P=0.002) and TP53 mutations for OS (P=0.043). Conclusions: Our study provided new insights into the mutational spectrum and molecular signatures of AML-M0 and M1. We proposed that FLT3-ITD, NPM1 and TP53 be identified as markers for risk stratification of AML-M0 and M1. Patients with AML-M0 and M1 would likely benefit from allo-HSCT. (C) 2018 The Author(s) Published by S. Karger AG, Basel
KW - Acute myeloid leukemia
KW - M0 and M1
KW - Next generation sequencing
KW - Mutational spectrum
KW - Prognosis
KW - PREDICTS FAVORABLE PROGNOSIS
KW - GENE-MUTATIONS
KW - CLASSIFICATION
KW - IMPACT
KW - NPM1
KW - AML
KW - INTERMEDIATE
KW - KARYOTYPE
KW - RELEVANCE
KW - PARADIGM
U2 - 10.1159/000491065
DO - 10.1159/000491065
M3 - Article
SN - 1015-8987
VL - 47
SP - 1853
EP - 1861
JO - Cellular physiology and biochemistry
JF - Cellular physiology and biochemistry
IS - 5
ER -