Comparison of two different stochastic models for extracting protein regularly pathways using Bayesian networks

Marco Grzegorczyk*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)


Toxicoproteomics integrates traditional toxicology and systems biology and seeks to infer the architecture of biochemical pathways in biological systems that are affected by and respond to chemical and environmental exposures. Different reverse engineering methods for extracting biochemical regulatory networks from data have been proposed and it is important to understand their relative strengths and weaknesses. To shed some light onto this problem, Werhli et al. (2006) cross-compared three widely used methodologies, relevance networks, graphical Gaussian models, and Bayesian networks (BN), on real cytometric and synthetic expression data. This study continues with the evaluation and compares the learning performances of two different stochastic models (BGe and BDe) for BN. Cytometric protein expression data from the RAF-signaling pathway were used for the cross-method comparison. Understanding this pathway is an important task, as it is known that RAF is a critical signaling protein whose deregulation leads to carcinogenesis. When the more flexible BDe model is employed, a data discretization, which usually incurs an inevitable information loss, is needed. However, the results of the study reveal that the BDe model is preferable to the BGe model when a sufficiently large number of observations from the pathway are available.

Original languageEnglish
Pages (from-to)827-834
Number of pages8
JournalJournal of Toxicology and Environmental Health. Part A: Current Issues
Issue number11-12
Publication statusPublished - 2008
EventSymposium on Environmental Toxicology in North Rhine-Westphalia, Germany - Interdisciplinary Research Activities in Toxicology, Statistics, Hygiene and Medicine - Dortmund, Germany
Duration: 10-May-200711-May-2007



Cite this