TY - JOUR
T1 - Compositional Features of HDL Particles Interact with Albuminuria to Modulate Cardiovascular Disease Risk
AU - Corsetti, James P
AU - Bakker, Stephan J L
AU - Gansevoort, Ronald T
AU - Gruppen, Eke G
AU - Connelly, Margery A
AU - Sparks, Charles E
AU - Dullaart, Robin P F
PY - 2019/2/23
Y1 - 2019/2/23
N2 - Lipoproteins containing apolipoprotein B modify associations of elevated urinary albumin excretion (UAE) with cardiovascular disease (CVD). Additionally, it is known that elevated UAE alters high-density lipoprotein functionality. Accordingly, we examined whether HDL features might also modify UAE-associated CVD. Multivariable Cox proportional-hazards modeling was performed on participants of the PREVEND (Prevention of Renal and Vascular Endstage Disease) study at the baseline screening with standard lipid/lipoprotein analyses and, three-to-four years later (second screen), with nuclear magnetic resonance lipoprotein analyses focusing on HDL parameters including HDL particle (HDL-P) and apolipoprotein A-I concentrations. These were used with UAE and derived measures of HDL apoA-I content (apoA-I/HDL-C and apoA-I/HDL-P) in risk models adjusted for gender, age, apoB, diabetes, past CVD history, CRP and GFR. Interaction analysis was also performed. Baseline screening revealed significant associations inverse for HDL-C and apoA-I and direct for apoA-I/HDL-C. The second screening demonstrated associations inverse for HDL-P, large HDL-P, medium HDL-P, HDL size, and apoA-I/HDL-P. Significant interactions with UAE included apoA-I/HDL-C at the baseline screening, and apoA-I/HDL-P and medium HDL-P but not apoA-I/HDL-C at the second screening. We conclude that features of HDL particles including apoA-I/HDL-P, indicative of HDL apoA-I content, and medium HDL-P modify associations of elevated UAE with CVD risk.
AB - Lipoproteins containing apolipoprotein B modify associations of elevated urinary albumin excretion (UAE) with cardiovascular disease (CVD). Additionally, it is known that elevated UAE alters high-density lipoprotein functionality. Accordingly, we examined whether HDL features might also modify UAE-associated CVD. Multivariable Cox proportional-hazards modeling was performed on participants of the PREVEND (Prevention of Renal and Vascular Endstage Disease) study at the baseline screening with standard lipid/lipoprotein analyses and, three-to-four years later (second screen), with nuclear magnetic resonance lipoprotein analyses focusing on HDL parameters including HDL particle (HDL-P) and apolipoprotein A-I concentrations. These were used with UAE and derived measures of HDL apoA-I content (apoA-I/HDL-C and apoA-I/HDL-P) in risk models adjusted for gender, age, apoB, diabetes, past CVD history, CRP and GFR. Interaction analysis was also performed. Baseline screening revealed significant associations inverse for HDL-C and apoA-I and direct for apoA-I/HDL-C. The second screening demonstrated associations inverse for HDL-P, large HDL-P, medium HDL-P, HDL size, and apoA-I/HDL-P. Significant interactions with UAE included apoA-I/HDL-C at the baseline screening, and apoA-I/HDL-P and medium HDL-P but not apoA-I/HDL-C at the second screening. We conclude that features of HDL particles including apoA-I/HDL-P, indicative of HDL apoA-I content, and medium HDL-P modify associations of elevated UAE with CVD risk.
U2 - 10.3390/ijms20040977
DO - 10.3390/ijms20040977
M3 - Article
C2 - 30813431
SN - 1422-0067
VL - 20
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 4
M1 - 977
ER -