Constraints on macroscopic realism without assuming non-invasive measurability

R. Hermens*, O. J. E. Maroney

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)
4 Downloads (Pure)

Abstract

Macroscopic realism is the thesis that macroscopically observable properties must always have definite values. The idea was introduced by Leggett and Garg (1985), who wished to show a conflict with the predictions of quantum theory, by using it to derive an inequality that quantum theory violates. However, Leggett and Garg's analysis required not just the assumption of macroscopic realism per se, but also that the observable properties could be measured non-invasively. In recent years there has been increasing interest in experimental tests of the violation of the Leggett-Garg inequality, but it has remained a matter of controversy whether this second assumption is a reasonable requirement for a macroscopic realist view of quantum theory. In a recent critical assessment Maroney and Timpson (2014) identified three different categories of macroscopic realism, and argued that only the simplest category could be ruled out by Leggett-Garg inequality violations. Allen, Maroney, and Gogioso (2016) then showed that the second of these approaches was also incompatible with quantum theory in Hilbert spaces of dimension 4 or higher. However, we show that the distinction introduced by Maroney and Timpson between the second and third approaches is not noise tolerant, so unfortunately Allen's result, as given, is not directly empirically testable. In this paper we replace Maroney and Timpson's three categories with a parameterization of macroscopic realist models, which can be related to experimental observations in a noise tolerant way, and recover the original definitions in the noise-free limit. We show how this parameterization can be used to experimentally rule out classes of macroscopic realism in Hilbert spaces of dimension 3 or higher, without any use of the non-invasive measurability assumption. Even for relatively low precision experiments, this will rule out the original category of macroscopic realism, that is tested by the Leggett-Garg inequality, while as the precision of the experiments increases, all cases of the second category and many cases of the third category, will become experimentally ruled out. (C) 2017 Elsevier Ltd. All rights reserved.

Original languageEnglish
Pages (from-to)50-64
Number of pages15
JournalStudies in history and philosophy of modern physics
Volume63
DOIs
Publication statusPublished - Aug-2018

Keywords

  • QUANTUM-MECHANICS
  • INEQUALITY
  • VIOLATION
  • THEOREM
  • FLUX

Cite this