Controlling propulsive forces in gait initiation in transfemoral amputees

Helco G. van Keeken*, Aline H. Vrieling, At L. Hof, Jan P. K. Halbertsma, Tanneke Schoppen, Klaas Postema, Bert Otten

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

17 Citations (Scopus)

Abstract

During prosthetic gait initiation, transfemoral (TF) amputees control the spatial and temporal parameters that modulate the propulsive forces, the positions of the center of pressure (CoP), and the center of mass (CoM). Whether their sound leg or the prosthetic leg is leading, the TF amputees reach the same end velocity. We wondered how the CoM velocity build up is influenced by the differences in propulsive components in the legs and how the trajectory of the CoP differs from the CoP trajectory in able bodied (AB) subjects. Seven TF subjects and eight AB subjects were tested on a force plate and on an 8 m long walkway. On the,force plate, they initiated gait two times with their sound leg and two times with their prosthetic leg. Force measurement data were used to calculate the CoAl velocity curves in horizontal and vertical directions. Gait initiated on the walkway was used to determine the leg preference. We hypothesized that because of the differences in propulsive components, the motions of the CoP and the CoM have to be different, as ankle muscles are used to help generate horizontal ground reaction force components. Also, due to the absence of an active ankle function in the prosthetic leg, the vertical CoM velocity during gait initiation may be different when leading with the prosthetic leg compared to when leading with the sound leg. The data showed that whether the TF subjects initiated a gait with their prosthetic leg or with their sound leg, their horizontal end velocity was equal. The subjects compensated the loss of propulsive force under the prosthesis with the sound leg, both when the prosthetic leg was leading and when the sound leg was leading. In the vertical CoM velocity, a tendency for differences between the two conditions was found. When initiating gait with the sound leg, the downward vertical CoM velocity at the end of the gait initiation was higher compared to when leading with the,prosthetic leg. Our subjects used a gait initiation strategy that depended mainly on the active ankle function of the sound leg; therefore, they changed the relative durations of the gait initiation anticipatory postural adjustment phase and the step execution phase. Both legs were controlled in one single system of gait propulsion. The shape of the CoP trajectories, the applied forces, and the CoM velocity curves are described in this paper.

Original languageEnglish
Article number01100
Number of pages9
JournalJournal of biomechanical engineering-Transactions of the asme
Volume130
Issue number1
DOIs
Publication statusPublished - Feb-2008

Keywords

  • ground reaction forces
  • prosthetic gait initiation
  • motor strategies
  • center of pressure
  • center of mass
  • velocity
  • BELOW-KNEE AMPUTATION
  • LOWER-LIMB AMPUTEES
  • MOVEMENTS
  • PRESSURE
  • MUSCLES
  • DISEASE
  • ADULTS
  • OLDER

Cite this