Abstract
Exocytosis of neurosecretory vesicles is mediated by the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins syntaxin-1, synaptobrevin and SNAP-25, with synaptotagmin functioning as the major Ca(2+) sensor for triggering membrane fusion. Here we show that bovine chromaffin granules readily fuse with large unilamellar liposomes in a SNARE-dependent manner. Fusion is enhanced by Ca(2+), but only when the target liposomes contain phosphatidylinositol-4,5-bisphosphate and when polyphosphate anions, such as nucleotides or pyrophosphate, are present. Ca(2+)-dependent enhancement is mediated by endogenous synaptotagmin-1. Polyphosphates operate by an electrostatic mechanism that reverses an inactivating cis association of synaptotagmin-1 with its own membrane without affecting trans binding. Hence, the balancing of trans- and cis-membrane interactions of synaptotagmin-1 could be a crucial element in the pathway of Ca(2+)-dependent exocytosis.
Original language | English |
---|---|
Pages (from-to) | 991-997 |
Number of pages | 7 |
Journal | Nature Structural & Molecular Biology |
Volume | 19 |
Issue number | 10 |
DOIs | |
Publication status | Published - 19-Oct-2012 |
Externally published | Yes |
Keywords
- synaptotagmin
- electrostatic screening
- exocytosis
- SNAREs