Projects per year
Abstract
Single-particle cryogenic electron-microscopy (cryo-EM) has emerged as a powerful technique for the structural characterisation of membrane proteins, especially for targets previously thought to be intractable. Taking advantage of the latest hard- and software developments, high-resolution three-dimensional (3D) reconstructions of membrane proteins by cryo-EM has become routine, with 300-kV transmission electron microscopes (TEMs) being the current standard. The use of 200-kV cryo-TEMs is gaining increasingly prominence, showing the capabilities of reaching better than 2 Å resolution for soluble proteins and better than 3 Å resolution for membrane proteins. Here, we highlight the challenges working with membrane proteins and the impact of cryo-EM, and review the technical and practical benefits, achievements and limitations of imaging at lower electron acceleration voltages.
Original language | English |
---|---|
Article number | 102440 |
Number of pages | 7 |
Journal | Current Opinion in Structural Biology |
Volume | 76 |
DOIs | |
Publication status | Published - 2022 |
Fingerprint
Dive into the research topics of 'Cryo-EM studies of membrane proteins at 200 keV'. Together they form a unique fingerprint.Projects
- 1 Finished
-
oLife Fellowship Programme
Roos, W. (PI), van der Tak, F. (PI), Zijlstra, W. (PI), Dobos, V. (Postdoc), Heinen, L. (Postdoc), Thangaratnarajah, C. (Postdoc), Hoekzema, M. (Postdoc), Blokhuis, A. (Postdoc), Mascotti, L. (Postdoc), Padin Santos, D. (Postdoc), Chopra, A. (Postdoc), Obermaier, S. (Postdoc), Driver, M. (Postdoc), Moreira Goulart, M. (Postdoc), Sasidharan, S. (Postdoc), Samar Mahapatra, S. (Postdoc), Zylstra, A. (Postdoc), Geiger, Y. (Postdoc), Llopis Lorente, A. (Postdoc), Aschmann, D. (Postdoc) & Kulala Vittala, S. (Postdoc)
01/04/2019 → 31/03/2024
Project: Research