Depth of shower maximum and mass composition of cosmic rays from 50 PeV to 2 EeV measured with the LOFAR radio telescope

A. Corstanje*, S. Buitink, H. Falcke, B. M. Hare, J. R. Hörandel, T. Huege, G. K. Krampah, P. Mitra, K. Mulrey, A. Nelles, H. Pandya, J. P. Rachen, O. Scholten, S. ter Veen, S. Thoudam, G. Trinh, T. Winchen

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

15 Citations (Scopus)
63 Downloads (Pure)


We present an updated cosmic-ray mass composition analysis in the energy range 1016.8 to 1018.3 eV from 334 air showers measured with the LOFAR radio telescope and selected for minimal bias. In this energy range, the origin of cosmic rays is expected to shift from galactic to extragalactic sources. The analysis is based on an improved method to infer the depth of the maximum Xmax of extensive air showers from radio measurements and air shower simulations. We show results of the average and standard deviation of Xmax versus primary energy and analyze the Xmax dataset at the distribution level to estimate the cosmic ray mass composition. Our approach uses an unbinned maximum likelihood analysis, making use of existing parametrizations of the Xmax distributions per element. The analysis has been repeated for three main models of hadronic interactions. Results are consistent with a significant light-mass fraction, at best fit 23% to 39% protons plus helium, depending on the choice of hadronic interaction model. The fraction of the intermediate-mass nuclei dominates. This confirms earlier results from LOFAR, with systematic uncertainties on Xmax now lowered to 7 to 9 g /cm2 . We find agreement in mass composition compared to results from Pierre Auger Observatory, within statistical and systematic uncertainties. However, in line with earlier LOFAR results, we find a slightly lower average Xmax. The values are in tension with those found at Pierre Auger Observatory but agree with results from other cosmic ray observatories based in the northern hemisphere.
Original languageEnglish
Article number102006
Number of pages17
JournalPhysical Review. B: Condensed Matter and Materials Physics
Publication statusPublished - 1-May-2021


  • Astrophysics - High Energy Astrophysical Phenomena
  • High Energy Physics - Experiment

Cite this