Detected Galaxies and Large Scale Structure in the Arecibo L-band Feed Array Zone of Avoidance Survey (ALFAZOA)

Patricia A. Henning, Monica Sanchez-Barrantes, Travis McIntyre, Robert F. Minchin, Emmanuel Momjian, Zhon Butcher, Jessica L. Rosenberg, Stephen E. Schneider, Lister Staveley-Smith, Wim van Driel, Mpati Ramatsoku, Baerbel Koribalski, Brady Spears

Research output: Contribution to journalArticleAcademicpeer-review


While large, systematic redshift surveys of galaxies have been conducted for decades, lack of information behind the Milky Way (the Zone of Avoidance) contributes uncertainty to our picture of dynamics in the local universe. Controversy persists for the dipole calculated from galaxy and redshift surveys compared to the CMB. Depth in redshift space is an issue, as is incomplete sky mapping, even of supposed all sky redshifts surveys. For instance, the wide-angle 2MASS Redshift Survey retains a gap of 5-8 deg around the Galactic plane. Fortunately, there is no ZOA at 21cm, except for velocities occupied by the Galaxy. This long-wavelength spectral line passes unimpeded through dust, and is unaffected by stellar confusion. With immediate redshift determination, a 21-cm survey produces a 3-dimensional map of the distribution of obscured galaxies which contain HI. It traces large-scale structure right across the Galactic Plane, and identifies obscured mass overdensities relevant to flow-field studies.ALFAZOA is a blind HI survey for galaxies behind the Milky Way covering more than 1000 square degrees of the Arecibo sky. It proceeds in two phases: shallow (completed) and deep (ongoing). The shallow survey (rms ~5-7 mJy) mapped the region within Galactic longitude l = 30 - 75 deg, and latitude b = -10 to +10 deg, detecting several hundred galaxies to about 12,000 km/s, tracing large-scale structure across the plane. The deep survey (rms ~1 mJy), in both the inner (Galactic longitude 30 - 75 deg and latitude plus/minus 2 deg) and outer (longitude 175 - 207 deg and latitude = +1 to -2 deg) Galaxy is ongoing, with detections reaching to 18,000 km/s. Analysis of detections to date, and large-scale structure mapped, will be presented.
Original languageEnglish
Article number137.08
JournalAmerican Astronomical Society Meeting
Publication statusPublished - Jan-2017

Cite this