Detecting Java software similarities by using different clustering techniques

Andrea Capiluppi*, Davide Di Ruscio, Juri Di Rocco, Phuong T. Nguyen, Nemitari Ajienka

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)

Abstract

Background: Research on empirical software engineering has increasingly been conducted by analysing and measuring vast amounts of software systems. Hundreds, thousands and even millions of systems have been (and are) considered by researchers, and often within the same study, in order to test theories, demonstrate approaches or run prediction models. A much less investigated aspect is whether the collected metrics might be context-specific, or whether systems should be better analysed in clusters. Objective: The objectives of this study are (i) to define a set of clustering techniques that might be used to group similar software systems, and (ii) to evaluate whether a suite of well-known object-oriented metrics is context-specific, and its values differ along the defined clusters. Method: We group software systems based on three different clustering techniques, and we collect the values of the metrics suite in each cluster. We then test whether clusters are statistically different between each other, using the Kolgomorov-Smirnov (KS) hypothesis testing. Results: Our results show that, for two of the used techniques, the KS null hypothesis (e.g., the clusters come from the same population) is rejected for most of the metrics chosen: the clusters that we extracted, based on application domains, show statistically different structural properties. Conclusions: The implications for researchers can be profound: metrics and their interpretation might be more sensitive to context than acknowledged so far, and application domains represent a promising filter to cluster similar systems.
Original languageEnglish
Article number106279
JournalInformation and Software Technology
Volume122
DOIs
Publication statusPublished - 1-Jun-2020
Externally publishedYes

Keywords

  • Application Domains
  • Expert Opinions
  • FOSS (Free and open-source software)
  • Latent Dirichlet Allocation
  • Machine Learning
  • OO (object-oriented)

Cite this