Abstract
Reduced-order modeling from data with dissipativity preservation is discussed in this talk. Employing the data informativity framework, the dissipativity of all systems consistent with noisy data can be characterized by a data-based linear matrix inequality (LMI). Furthermore, semi-definite programming duality helps us to prove the existence of minimal and maximal solutions to the LMI. As in the classical bounded-real and positive-real balanced truncation, these extremal solutions play a role in the computation of well-approximating reduced-order models carrying the dissipativity property. As an additional advantage of using this balancing-type method, a priori error bounds of the reduced-order models are available.
Original language | English |
---|---|
Publication status | Submitted - 28-Feb-2023 |
Event | 2023 SIAM Conference on Computational Science and Engineering(CSE23) - RAI Congress Centre, Amsterdam, Netherlands Duration: 26-Feb-2023 → 3-Mar-2023 https://www.siam.org/conferences/cm/conference/cse23 |
Conference
Conference | 2023 SIAM Conference on Computational Science and Engineering(CSE23) |
---|---|
Country/Territory | Netherlands |
City | Amsterdam |
Period | 26/02/2023 → 03/03/2023 |
Internet address |