Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers

Franklin D. Fuller, Sheraz Gul, Ruchira Chatterjee, E. Sethe Burgie, Iris D. Young, Hugo Lebrette, Vivek Srinivas, Aaron S. Brewster, Tara Michels-Clark, Jonathan A. Clinger, Babak Andi, Mohamed Ibrahim, Ernest Pastor, Casper de Lichtenberg, Rana Hussein, Christopher J. Pollock, Miao Zhang, Claudiu A. Stan, Thomas Kroll, Thomas FranssonClemens Weninger, Markus Kubin, Pierre Aller, Louise Lassalle, Philipp Braeuer, Mitchell D. Miller, Muhamed Amin, Sergey Koroidov, Christian G. Roessler, Marc Allaire, Raymond G. Sierra, Peter T. Docker, James M. Glownia, Silke Nelson, Jason E. Koglin, Diling Zhu, Matthieu Chollet, Sanghoon Song, Henrik Lemke, Mengning Liang, Dimosthenis Sokaras, Roberto Alonso-Mori, Athina Zouni, Johannes Messinger, Uwe Bergmann, Amie K. Boal, J. Martin Bollinger, Carsten Krebs, Martin Hoegbom, George N. Phillips, Richard D. Vierstra, Nicholas K. Sauter, Allen M. Orville, Jan Kern, Vittal K. Yachandra, Junko Yano

Research output: Contribution to journalArticleAcademicpeer-review

135 Citations (Scopus)

Abstract

X-ray crystallography at X-ray free-electron laser sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy, both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing insights into the interplay between the protein structure and dynamics and the chemistry at an active site. The implementation of such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly affects the data quality. We present here a robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem IIII, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.

Original languageEnglish
Pages (from-to)443-+
Number of pages11
JournalNature Methods
Volume14
Issue number4
DOIs
Publication statusPublished - Apr-2017
Externally publishedYes

Keywords

  • PHOTOSYSTEM-II
  • MANGANESE(IV)/IRON(III) COFACTOR
  • EMISSION SPECTROSCOPY
  • PHYTOCHROME
  • RESOLUTION
  • WATER
  • CRYSTALLOGRAPHY
  • DIFFRACTION
  • CHROMOPHORE
  • TRANSITION

Cite this