Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor

Jiaobing Wang, B.L. Feringa

Research output: Contribution to journalArticleAcademicpeer-review

418 Citations (Scopus)
189 Downloads (Pure)

Abstract

Enzymes and synthetic chiral catalysts have found widespread application to produce single enantiomers, but in situ switching of the chiral preference of a catalytic system is very difficult to achieve. Here, we report on a light-driven molecular motor with integrated catalytic functions in which the stepwise change in configuration during a 360 degrees unidirectional rotary cycle governs the catalyst performance both with respect to activity and absolute stereocontrol in an asymmetric transformation. During one full rotary cycle, catalysts are formed that provide either racemic (R,S) or preferentially the R or the S enantiomer of the chiral product of a conjugate addition reaction. This catalytic system demonstrates how different molecular tasks can be performed in a sequential manner, with the sequence controlled by the directionality of a rotary cycle.

Original languageEnglish
Pages (from-to)1429-1432
Number of pages4
JournalScience
Volume331
Issue number6023
DOIs
Publication statusPublished - 18-Mar-2011

Keywords

  • MICHAEL ADDITION

Cite this