Dynamic disorder in simple enzymatic reactions induces stochastic amplification of substrate

Ankit Gupta, Andreas Milias-Argeitis, Mustafa Khammash*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

11 Citations (Scopus)
53 Downloads (Pure)

Abstract

A growing amount of evidence over the last two decades points to the fact that many enzymes exhibit fluctuations in their catalytic activity, which are associated with conformational changes on a broad range of timescales. The experimental study of this phenomenon, termed dynamic disorder, has become possible thanks to advances in single-molecule enzymology measurement techniques, through which the catalytic activity of individual enzyme molecules can be tracked in time. The biological role and importance of these fluctuations in a system with a small number of enzymes, such as a living cell, have only recently started being explored. In this work, we examine a simple stochastic reaction system consisting of an inflowing substrate and an enzyme with a randomly fluctuating catalytic reaction rate that converts the substrate into an outflowing product. To describe analytically the effect of rate fluctuations on the average substrate abundance at steady state, we derive an explicit formula that connects the relative speed of enzymatic fluctuations with the mean substrate level. Under fairly general modelling assumptions, we demonstrate that the relative speed of rate fluctuations can have a dramatic effect on the mean substrate, and lead to large positive deviations from predictions based on the assumption of deterministic enzyme activity. Our results also establish an interesting connection between the amplification effect and the mixing properties of the Markov process describing the enzymatic activity fluctuations, which can be used to easily predict the fluctuation speed above which such deviations become negligible. As the techniques of single-molecule enzymology continuously evolve, it may soon be possible to study the stochastic phenomena due to enzymatic activity fluctuations within living cells. Our work can be used to formulate experimentally testable hypotheses regarding the nature and magnitude of these fluctuations, as well as their phenotypic consequences.

Original languageEnglish
Article number20170311
Number of pages13
JournalJournal of the Royal Society Interface
Volume14
Issue number132
DOIs
Publication statusPublished - 1-Jul-2017

Keywords

  • Continuous-time Markov chains
  • Dynamic disorder
  • Stochastic chemical kinetics
  • SINGLE-MOLECULE
  • CONFORMATIONAL DYNAMICS
  • CHEMICAL-REACTIONS
  • FLUCTUATIONS
  • MODELS
  • MENTEN
  • EQUATION
  • KINETICS
  • ENZYMES

Fingerprint

Dive into the research topics of 'Dynamic disorder in simple enzymatic reactions induces stochastic amplification of substrate'. Together they form a unique fingerprint.

Cite this