Effect of the Polyketone Aromatic Pendent Groups on the Electrical Conductivity of the Derived MWCNTs-Based Nanocomposites

Nicola Migliore, Lorenzo Massimo Polgar, Rodrigo Araya-Hermosilla, Francesco Picchioni, Patrizio Raffa, Andrea Pucci*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

7 Citations (Scopus)
363 Downloads (Pure)

Abstract

Electrically conductive plastics with a stable electric response within a wide temperature range are promising substitutes of conventional inorganic conductive materials. This study examines the preparation of thermoplastic polyketones (PK30) functionalized by the Paal-Knorr process with phenyl (PEA), thiophene (TMA), and pyrene (PMA) pendent groups with the aim of optimizing the non-covalent functionalization of multiwalled carbon nanotubes (MWCNTs) through - interactions. Among all the aromatic functionalities grafted to the PK30 backbone, the extended aromatic nuclei of PMA were found to be particularly effective in preparing well exfoliated and undamaged MWCNTs dispersions with a well-defined conductive percolative network above the 2 wt % of loading and in freshly prepared nanocomposites as well. The efficient and superior - interactions between PK30PMA and MWCNTs consistently supported the formation of nanocomposites with a highly stable electrical response after thermal solicitations such as temperature annealing at the softening point, IR radiation exposure, as well as several heating/cooling cycles from room temperature to 75 degrees C.

Original languageEnglish
Article number618
Number of pages16
JournalPolymers
Volume10
Issue number6
DOIs
Publication statusPublished - Jun-2018

Keywords

  • functionalized polyketones
  • MWCNTs nanocomposites
  • electrically conductive plastics
  • WALLED CARBON NANOTUBES
  • DIELS-ALDER CHEMISTRY
  • MECHANICAL-PROPERTIES
  • NONCOVALENT FUNCTIONALIZATION
  • TEMPERATURE SENSORS
  • SKIN TEMPERATURE
  • COMPOSITES
  • DISPERSION
  • POLYMERS
  • THERMOSET

Cite this