Effects of tracer uptake time in non-small cell lung cancer 18F-FDG PET radiomics

Guilherme Domingues Kolinger*, David Vállez García, Gerbrand Maria Kramer, Virginie Frings, Gerben Johannes Cornelis Zwezerijnen, Egbert F. Smit, Adrianus Johannes de Langen, Irène Buvat, Ronald Boellaard

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

4 Citations (Scopus)
22 Downloads (Pure)


Positron emission tomography (PET) radiomics applied to oncology allows the measurement of intra-tumoral heterogeneity. This quantification can be affected by image protocols hence there is an increased interest in understanding how radiomic expression on PET images is affected by different imaging conditions. To address that, this study explores how radiomic features are affected by changes in 18F-FDG uptake time, image reconstruction, lesion delineation, and radiomics binning settings.
Methods: Ten non-small cell lung cancer (NSCLC) patients underwent 18F-FDG PET scans on two consecutive days. On each day, scans were obtained at 60min and 90min post-injection and reconstructed following EARL version 1 (EARL1) and with point-spread-function resolution modelling (PSF-EARL2). Lesions were delineated using thresholds at SUV=4.0, 40% of SUVmax, and with a contrast-based isocontour. PET image intensity was discretized with both fixed bin width (FBW) and fixed bin number (FBN) before the calculation of the radiomic features. Repeatability of features was measured with intraclass correlation (ICC), and the change in feature value over time was calculated as a function of its repeatability. Features were then classified on use-case scenarios based on their repeatability and susceptibility to tracer uptake time.

Results: With PSF-EARL2 reconstruction, 40% of SUVmax lesion delineation, and FBW intensity discretization, most features (94%) were repeatable at both uptake times (ICC>0.9), 39% being classified for dual-time-point use-case for being sensitive to changes in uptake time, 39% were classified for cross-sectional studies with unclear dependency on time, 20% classified for cross-sectional use while being robust to tracer uptake time changes, and 6% were discarded for poor repeatability. EARL1 images had one less repeatable feature than PSF-EARL2 (Neighborhood Gray-Level Different Matrix Coarseness), the contrast-based delineation had the poorest repeatability of the delineation methods with 45% features being discarded, and FBN resulted in lower repeatability than FBW (45% and 6% features were discarded, respectively).

Conclusion: Repeatability was maximized with PSF-EARL2 reconstruction, lesion delineation at 40% of SUVmax, and FBW intensity discretization. Based on their susceptibility to tracer uptake time, radiomic features were classified into specific NSCLC PET radiomics use-cases.
Original languageEnglish
Pages (from-to)919-924
Number of pages6
JournalJournal of Nuclear Medicine
Issue number6
Early online date21-Dec-2021
Publication statusPublished - 1-Jun-2022


  • Oncology: Lung
  • PET
  • Radiomics
  • Repeatability
  • Texture analysis

Cite this