Abstract
Event cameras have become attractive alternatives to regular frame-based cameras in many scenarios, from consumer electronics over surveillance to autonomous driving.
Their novel sensor paradigm of asynchronously detecting brightness changes in a scene make them faster, more energy-efficient and less susceptible to global illumination.
Processing these event streams calls for algorithms that are as efficient as the camera itself, while being competitive to frame-based computer vision on tasks like object recognition and detection.
This thesis contributes methods to obtain efficient neural networks for classification and object detection in event streams.
We adopt ANN-to-SNN (artificial neural network to spiking neural network) conversion to handle sequential data like videos or event streams to improve state-of-the-art in accuracy and energy-efficiency.
We propose a novel network architecture called hybrid SNN-ANN, to train a mixed SNN and ANN network using surrogate gradients.
These hybrid networks are more efficient, even compared to trained and converted SNNs.
To detect objects with only a small number of events, we propose a filter and a memory, both improving results during inference.
Our networks advance the state-of-the-art in event stream processing and contribute to the success of event cameras.
Given suitable neuromorphic hardware, our spiking neural networks enable event cameras to be used in scenarios with a limited energy budget.
Our proposed hybrid architecture can guide the design of novel hybrid neuromorphic devices that combine efficient sparse and dense processing.
Their novel sensor paradigm of asynchronously detecting brightness changes in a scene make them faster, more energy-efficient and less susceptible to global illumination.
Processing these event streams calls for algorithms that are as efficient as the camera itself, while being competitive to frame-based computer vision on tasks like object recognition and detection.
This thesis contributes methods to obtain efficient neural networks for classification and object detection in event streams.
We adopt ANN-to-SNN (artificial neural network to spiking neural network) conversion to handle sequential data like videos or event streams to improve state-of-the-art in accuracy and energy-efficiency.
We propose a novel network architecture called hybrid SNN-ANN, to train a mixed SNN and ANN network using surrogate gradients.
These hybrid networks are more efficient, even compared to trained and converted SNNs.
To detect objects with only a small number of events, we propose a filter and a memory, both improving results during inference.
Our networks advance the state-of-the-art in event stream processing and contribute to the success of event cameras.
Given suitable neuromorphic hardware, our spiking neural networks enable event cameras to be used in scenarios with a limited energy budget.
Our proposed hybrid architecture can guide the design of novel hybrid neuromorphic devices that combine efficient sparse and dense processing.
Original language | English |
---|---|
Qualification | Doctor of Philosophy |
Awarding Institution |
|
Supervisors/Advisors |
|
Award date | 19-Dec-2023 |
Place of Publication | [Groningen] |
Publisher | |
DOIs | |
Publication status | Published - 2023 |