Engineering Cyclohexanone Monooxygenase for the Production of Methyl Propanoate

Research output: Contribution to journalArticleAcademicpeer-review

21 Citations (Scopus)
1 Downloads (Pure)

Abstract

A previous study showed that cyclohexanone monooxygenase from Acinetobacter calcoaceticus (AcCHMO) catalyzes the Baeyer-Villiger oxidation of 2-butanone, yielding ethyl acetate and methyl propanoate as products. Methyl propanoate is of industrial interest as a precursor of acrylic plastic. Here, various residues near the substrate and NADP+ binding sites in AcCHMO were subjected to saturation mutagenesis to enhance both the activity on 2-butanone and the regioselectivity toward methyl propanoate. The resulting libraries were screened using whole cell biotransformations, and headspace gas chromatography-mass spectrometry was used to identify improved AcCHMO variants. This revealed that the I491A AcCHMO mutant exhibits a significant improvement over the wild type enzyme in the desired regioselectivity using 2-butanone as a substrate (40% vs. 26% methyl propanoate, respectively). Another interesting mutant is T56S AcCHMO, which exhibits a higher conversion yield (92%) and kcat (0.5 s-1) than wild type AcCHMO (52% and 0.3 s-1, respectively). Interestingly, the uncoupling rate for T56S AcCHMO is also significantly lower than that for the wild type enzyme. The T56S/I491A double mutant combined the beneficial effects of both mutations leading to higher conversion and improved regioselectivity. This study shows that even for a relatively small aliphatic substrate (2-butanone), catalytic efficiency and regioselectivity can be tuned by structure-inspired enzyme engineering.

Original languageEnglish
Article numberacschembio.6b00965
Pages (from-to)291-299
Number of pages8
JournalACS chemical biology
Volume12
Issue number1
DOIs
Publication statusPublished - 2017

Cite this