Abstract
Photosynthetic water-splitting is a powerful force to drive selective redox reactions. The need of highly expensive redox partners such as NADPH and their regeneration is one of the main bottlenecks for the application of biocatalysis at an industrial scale. Recently, the possibility of using the photosystem of cyanobacteria to supply high amounts of reduced nicotinamide to a recombinant enoate reductase opened a new strategy for overcoming this hurdle. This paper presents the expansion of the photosynthetic regeneration system to a Baeyer-Villiger monooxygenase. Despite the potential of this strategy, this work also presents some of the encountered challenges as well as possible solutions, which will require further investigation. The successful enzymatic oxygenation shows that cyanobacterial whole-cell biocatalysis is an applicable approach that allows fuelling selective oxyfunctionalisation reactions at the expense of light and water. Yet, several hurdles such as side-reactions and the cell-density limitation, probably due to self-shading of the cells, will have to be overcome on the way to synthetic applications.
Original language | English |
---|---|
Article number | 240 |
Number of pages | 8 |
Journal | Catalysts |
Volume | 7 |
Issue number | 8 |
DOIs | |
Publication status | Published - Aug-2017 |
Externally published | Yes |
Keywords
- photosynthesis
- catalytic water-splitting
- Baeyer-Villiger oxidation
- cyanobacteria
- recombinant enzyme expression
- ASYMMETRIC REDUCTION