TY - JOUR
T1 - Euclid
T2 - Cosmology forecasts from the void-galaxy cross-correlation function with reconstruction
AU - Euclid Collaboration
AU - Radinovič, S.
AU - Nadathur, S.
AU - Winther, H. A.
AU - Percival, W. J.
AU - Woodfinden, A.
AU - Massara, E.
AU - Paillas, E.
AU - Branchini, E.
AU - Nutma, T.
AU - Valentijn, E. A.
N1 - Funding Information:
SR acknowledges support from the Research Council of Norway through project 325113. SN acknowledges support from an STFC Ernest Rutherford Fellowship, grant reference ST/T005009/2. AW acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) [funding reference number 547744]. Research at Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Colleges and Universities. This work has made use of CosmoHub (Carretero et al. 2017; Tallada et al. 2020). CosmoHub has been developed by the Port d’Informació Científica (PIC), maintained through a collaboration of the Institut de Física d’Altes Energies (IFAE) and the Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and the Institute of Space Sciences (CSIC and IEEC), and was partially funded by the “Plan Estatal de Investigación Científica y Técnica y de Innovación” programme of the Spanish government. The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Academy of Finland, the Agenzia Spaziale Italiana, the Belgian Science Policy, the Canadian Euclid Consortium, the French Centre National d’Études Spatiales, the Deutsches Zentrum für Luft- und Raumfahrt, the Danish Space Research Institute, the Fundação para a Ciência e a Tecnologia, the Ministerio de Ciencia e Innovación, the National Aeronautics and Space Administration, the National Astronomical Observatory of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Romanian Space Agency, the State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site ( http://www.euclid-ec.org ).
Publisher Copyright:
© 2023 Authors. All rights reserved.
PY - 2023/9
Y1 - 2023/9
N2 - We have investigated the cosmological constraints that can be expected from measurement of the cross-correlation of galaxies with cosmic voids identified in the Euclid spectroscopic survey, which will include spectroscopic information for tens of millions of galaxies over 15 000 deg2 of the sky in the redshift range 0.9 ≤ z < 1.8. We have done this using simulated measurements obtained from the Flagship mock catalogue, the official Euclid mock that closely matches the expected properties of the spectroscopic dataset. To mitigate anisotropic selection-bias effects, we have used a velocity field reconstruction method to remove large-scale redshift-space distortions from the galaxy field before void-finding. This allowed us to accurately model contributions to the observed anisotropy of the cross-correlation function arising from galaxy velocities around voids as well as from the Alcock-Paczynski effect, and we studied the dependence of constraints on the efficiency of reconstruction. We find that Euclid voids will be able to constrain the ratio of the transverse comoving distance DM and Hubble distance DH to a relative precision of about 0:3%, and the growth rate fσ8 to a precision of between 5% and 8% in each of the four redshift bins covering the full redshift range. In the standard cosmological model, this translates to a statistical uncertainty δωm = ±0.0028 on the matter density parameter from voids, which is better than what can be achieved from either Euclid galaxy clustering and weak lensing individually. We also find that voids alone can measure the dark energy equation of state to a 6% precision.
AB - We have investigated the cosmological constraints that can be expected from measurement of the cross-correlation of galaxies with cosmic voids identified in the Euclid spectroscopic survey, which will include spectroscopic information for tens of millions of galaxies over 15 000 deg2 of the sky in the redshift range 0.9 ≤ z < 1.8. We have done this using simulated measurements obtained from the Flagship mock catalogue, the official Euclid mock that closely matches the expected properties of the spectroscopic dataset. To mitigate anisotropic selection-bias effects, we have used a velocity field reconstruction method to remove large-scale redshift-space distortions from the galaxy field before void-finding. This allowed us to accurately model contributions to the observed anisotropy of the cross-correlation function arising from galaxy velocities around voids as well as from the Alcock-Paczynski effect, and we studied the dependence of constraints on the efficiency of reconstruction. We find that Euclid voids will be able to constrain the ratio of the transverse comoving distance DM and Hubble distance DH to a relative precision of about 0:3%, and the growth rate fσ8 to a precision of between 5% and 8% in each of the four redshift bins covering the full redshift range. In the standard cosmological model, this translates to a statistical uncertainty δωm = ±0.0028 on the matter density parameter from voids, which is better than what can be achieved from either Euclid galaxy clustering and weak lensing individually. We also find that voids alone can measure the dark energy equation of state to a 6% precision.
KW - Cosmological parameters
KW - Cosmology: observations
KW - Large-scale structure of Universe
KW - Surveys
UR - http://www.scopus.com/inward/record.url?scp=85171149608&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/202346121
DO - 10.1051/0004-6361/202346121
M3 - Article
AN - SCOPUS:85171149608
SN - 0004-6361
VL - 677
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
M1 - A78
ER -