Euclid: Improving the efficiency of weak lensing shear bias calibration. Pixel noise cancellation and the response method on trial

Euclid Collaboration, H. Jansen*, M. Tewes, T. Schrabback, N. Aghanim, A. Amara, S. Andreon, N. Auricchio, E. A. Valentijn

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)
31 Downloads (Pure)

Abstract

To obtain an accurate cosmological inference from upcoming weak lensing surveys such as the one conducted by Euclid, the shear measurement requires calibration using galaxy image simulations. We study the efficiency of different noise cancellation methods that aim at reducing the simulation volume required to reach a given precision in the shear measurement. Explicitly, we compared fit methods with different noise cancellations and a method based on responses. We used GalSim to simulate galaxies both on a grid and at random positions in larger scenes. Placing the galaxies at random positions requires their detection, which we performed with SExtractor. On the grid, we neglected the detection step and, therefore, the potential detection bias arising from it. The shear of the simulated images was measured with the fast moment-based method KSB, for which we note deviations from purely linear shear measurement biases. For the estimation of uncertainties, we used bootstrapping as an empirical method. We find that each method we studied on top of shape noise cancellation can further increase the efficiency of calibration simulations. The improvement depends on the considered shear amplitude range and the type of simulations (grid-based or random positions). The response method on a grid for small shears provides the biggest improvement. In the more realistic case of randomly positioned galaxies, we still find an improvement factor of 70 for small shears using the response method. Alternatively, the runtime can be lowered by a factor of 7 already using pixel noise cancellation on top of shape noise cancellation. Furthermore, we demonstrate that the efficiency of shape noise cancellation can be enhanced in the presence of blending if entire scenes are rotated instead of individual galaxies.
Original languageEnglish
Article numberA240
Number of pages23
JournalAstronomy & Astrophysics
Volume683
DOIs
Publication statusPublished - Mar-2024

Keywords

  • Astrophysics - Cosmology and Nongalactic Astrophysics

Fingerprint

Dive into the research topics of 'Euclid: Improving the efficiency of weak lensing shear bias calibration. Pixel noise cancellation and the response method on trial'. Together they form a unique fingerprint.

Cite this