Abstract
Conventional hydrodesulfurization technology was limited to treat aromatic heterocyclic sulfur compounds in ultralow-sulfur diesel. Extractive desulfurization (EDS) using ionic liquid (IL) exhibited good performance to address these issues, except for its long extraction time (15-40 min). To address this, microreactor was adopted to intensify the IL-based EDS, where dibenzothiophene was extracted from model diesel (MD) as the continuous phase to 1-butyl-3-methylimidazolium tetrafluoroborate as the dispersed phase under segmented flow (which appeared preferably at capillary numbers lower than 0.01). The effects of temperature, residence time and flow rate ratio on the desulfurization efficiency were investigated. The extraction equilibration time could be shortened from more than 15 min in conventional batch extractors to 120 s in microreactors. The extraction process was modeled according to the two-film model applied within a unit cell of the segmented flow, where the mass transfer resistance was considered primarily on the film side of the IL droplet. The mechanism for the improved EDS performance at higher temperatures or larger IL to MD flow ratios was investigated and validated, which was related to the significant increase in the diffusion coefficient or the specific interfacial area. These findings may shed important insights into the precise manipulation of IL-based EDS for a better process design and reactor optimization.
Original language | English |
---|---|
Article number | 127419 |
Number of pages | 13 |
Journal | Chemical Engineering Journal |
Volume | 413 |
Early online date | 23-Oct-2020 |
DOIs | |
Publication status | Published - 1-Jun-2021 |
Keywords
- Ionic liquids
- Extractive desulfurization
- Microreactor
- Two-phase flow
- Mass transfer