Abstract
The role of the intestinal microbiota as a regulator of autoimmune diabetes in animal models is well-established, but data on human type 1 diabetes are tentative and based on studies including only a few study subjects. To exclude secondary effects of diabetes and FILA risk genotype on gut microbiota, we compared the intestinal microbiota composition in children with at least two diabetes-associated autoantibodies (n = 18) with autoantibody-negative children matched for age, sex, early feeding history, and HLA risk genotype using pyrosequencing. Principal component analysis indicated that a low abundance of lactate-producing and butyrate-producing species was associated with beta-cell autoimmunity. In addition, a dearth of the two most dominant Bifidobacterium species, Bifidobacterium adolescentis and Bifidobacterium pseudocatenulatum, and an increased abundance of the Bacteroides genus were observed in the children with beta-cell autoimmunity. We did not find increased fecal calprotectin or IgA as marker of inflammation in children with beta-cell autoimmunity. Functional studies related to the observed alterations in the gut microbiome are warranted because the low abundance of bifidobacteria and butyrate-producing species could adversely affect the intestinal epithelial barrier function and inflammation, whereas the apparent importance of the Bacteroides genus in development of type 1 diabetes is insufficiently understood. Diabetes 62:1238-1244, 2013
Original language | English |
---|---|
Pages (from-to) | 1238-1244 |
Number of pages | 7 |
Journal | Diabetes |
Volume | 62 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr-2013 |
Keywords
- BACTERIAL TRANSLOCATION
- INTESTINAL MICROBIOTA
- DIABETES-MELLITUS
- SEQUENCE DATA
- GUT
- BUTYRATE
- RISK
- FERMENTATION
- MECHANISMS
- IMMUNITY