Fetoplacental endothelial exosomes modulate high d-glucose-induced endothelial dysfunction

Tamara Sáez, Paul de Vos, Jeroen Kuipers, Luis Sobrevia, Marijke M Faas

Research output: Contribution to journalArticleAcademicpeer-review

19 Citations (Scopus)
256 Downloads (Pure)


INTRODUCTION: Gestational diabetes mellitus (GDM) is associated with fetoplacental endothelial dysfunction, which may be induced by hyperglycemia. We hypothesized that endothelial exosomes, which are extracellular nanovesicles affecting endothelial function, play a role in the high glucose (HG)-induced endothelial dysfunction.

METHODS: Exosomes were isolated from HUVECs incubated with basal glucose (5.5 mmol/L; HUVEC- BG; exo-BG) and from HUVECs incubated with HG for 24 h (25 mmol/L; HUVEC-HG; exo-HG) in exosome-free medium. Exosomes were isolated and characterized by ultracentrifugation, sucrose gradient, electron microscopy, nanotracking analysis and Western blotting. HUVEC-BG and HUVEC-HG were exposed to exo-BG and exo-HG in two different concentrations: 5 μg and 1 μg exosome protein/mL. The exosomal effect on endothelial cell function was determined by wound healing assay, expression of endothelial nitric oxide synthase (eNOS), human cationic amino acid transporter type 1 (hCAT-1), vascular endothelial growth factor (VEGF) and intracellular adhesion molecule type 1 (ICAM-1) by Western blotting, qPCR or flow cytometry.

RESULTS: HG increased the exosomal release from HUVECs, endothelial wound healing and expression of phosphorylated (P∼Ser1177)-eNOS, hCAT-1, VEGF and ICAM-1. Exo-HG also increased endothelial cell wound healing, P∼Ser1177-eNOS, hCAT-1 and ICAM-1 expression in HUVEC-BG. Exo-BG reverted the effect of HG on endothelial cell wound healing and hCAT-1 mRNA expression to normal values.

DISCUSSION: Our results show that HG may induce endothelial dysfunction in HUVECs and that exosomes from HUVEC-HG mimicked some of the effects of HG. This study contributes to the unraveling of the mechanism by which hyperglycemia affects the fetoplacental vasculature in GDM.

Original languageEnglish
Pages (from-to)26-35
Number of pages10
Publication statusPublished - Jun-2018

Cite this