Generalized Distance Transforms and Skeletons in Graphics Hardware

R. Strzodka, A. Telea

Research output: Chapter in Book/Report/Conference proceedingChapterAcademic

74 Downloads (Pure)

Abstract

We present a framework for computing generalized distance transforms and skeletons of two-dimensional objects using graphics hardware. Our method is based on the concept of footprint splatting. Combining different splats produces weighted distance transforms for different metrics, as well as the corresponding skeletons and Voronoi diagrams. We present a hierarchical acceleration scheme and a subdivision scheme that allows visualizing the computed skeletons with subpixel accuracy in real time. Our splatting approach allows one to easily change all the metric parameters, treat any 2D boundaries, and easily produce both DTs and skeletons. We illustrate the method by several examples.
Original languageEnglish
Title of host publicationEPRINTS-BOOK-TITLE
PublisherUniversity of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science
Number of pages10
Publication statusPublished - 2004

Cite this