@article{d26c3bea12684938a2507ef99126ed65,
title = "Graphene oxide decorated with gold enables efficient biophotovolatic cells incorporating photosystem I",
abstract = "This paper describes the use of reduced graphene oxide decorated with gold nanoparticles as an efficient electron transfer layer for solid-state biophotovoltic cells containing photosystem I as the sole photo-active component. Together with polytyrosine-polyaniline as a hole transfer layer, this device architecture results in an open-circuit voltage of 0.3 V, a fill factor of 38% and a short-circuit current density of 5.6 mA cm−2 demonstrating good coupling between photosystem I and the electrodes. The best-performing device reached an external power conversion efficiency of 0.64%, the highest for any solid-state photosystem I-based photovoltaic device that has been reported to date. Our results demonstrate that the functionality of photosystem I in the non-natural environment of solid-state biophotovoltaic cells can be improved through the modification of electrodes with efficient charge-transfer layers. The combination of reduced graphene oxide with gold nanoparticles caused tailoring of the electronic structure and alignment of the energy levels while also increasing electrical conductivity. The decoration of graphene electrodes with gold nanoparticles is a generalizable approach for enhancing charge-transfer across interfaces, particularly when adjusting the levels of the active layer is not feasible, as is the case for photosystem I and other biological molecules.",
author = "Nahid Torabi and Sylvia Rousseva and Qi Chen and Ali Ashrafi and Ahmad Kermanpur and Chiechi, {Ryan C.}",
note = "Funding Information: This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of The Netherlands Organization for Scientific Research (NWO). This is a publication by the FOM Focus Group “Next Generation Organic Photovoltaics”, participating in the Dutch Institute for Fundamental Energy Research (DIFFER). N. T. acknowledges the Zernike Institute of Advanced Materials. N. T. acknowledges financial support from the Ministry of Science, Research, and Technology of Iran (MSRT). The authors thank T. Zaharia, A. F, Kamp and B. Visser for their technical assistance and maintenance of the cleanroom. Funding Information: This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of The Netherlands Organization for Scientific Research (NWO). This is a publication by the FOM Focus Group ?Next Generation Organic Photovoltaics?, participating in the Dutch Institute for Fundamental Energy Research (DIFFER). N. T. acknowledges the Zernike Institute of Advanced Materials. N. T. acknowledges financial support from the Ministry of Science, Research, and Technology of Iran (MSRT). The authors thank T. Zaharia, A. F, Kamp and B. Visser for their technical assistance and maintenance of the cleanroom. Publisher Copyright: {\textcopyright} 2022 The Royal Society of Chemistry",
year = "2022",
month = mar,
day = "22",
doi = "10.1039/d1ra08908k",
language = "English",
volume = "12",
pages = "8783--8791",
journal = "RSC Advances",
issn = "2046-2069",
publisher = "ROYAL SOC CHEMISTRY",
number = "14",
}