TY - JOUR
T1 - Highly Branched Waxy Potato Starch-Based Polyelectrolyte
T2 - Controlled Synthesis and the Influence of Chain Composition on Solution Rheology
AU - Fan, Yifei
AU - Bose, Ranjita K.
AU - Picchioni, Francesco
PY - 2020/6/10
Y1 - 2020/6/10
N2 - In the present work, a series of highly branched random copolymers of acrylamide (AM), sodium 2-acrylamido-2-methyl-1-propanesulfonate (SAMPS), and N-isopropylacrylamide (NIPAM) were prepared by using water-soluble waxy potato starch-based macroinitiator via aqueous Cu0-mediated living radical polymerization (25 °C). The AM/SAMPS/NIPAM ratio was varied to investigate the influence of chain composition on the aqueous rheological properties of the prepared copolymers. Rheological results indicated an optimum SAMPS intake (25 mol %) for the balanced performance of viscosity and salt resistance in saline water. The intake of NIPAM units (e.g., 25 mol %), contrary to what was expected, undermines the thickening ability of the copolymers in saline water because of hydrophobic association. In high salinity solution, thermo-thickening behavior can be observed at low shear rates (γ≤ 3 s-1) because of the screening effect of salt on the negatively charged SAMPS units. At the high shear rate, the thermo-thickening behavior disappears because of the disruption of the NIPAM aggregates. These results pave the way toward the use of the prepared polymers as rheology modifiers in a variety of possible formulations for different applications, in particular in enhanced oil recovery.
AB - In the present work, a series of highly branched random copolymers of acrylamide (AM), sodium 2-acrylamido-2-methyl-1-propanesulfonate (SAMPS), and N-isopropylacrylamide (NIPAM) were prepared by using water-soluble waxy potato starch-based macroinitiator via aqueous Cu0-mediated living radical polymerization (25 °C). The AM/SAMPS/NIPAM ratio was varied to investigate the influence of chain composition on the aqueous rheological properties of the prepared copolymers. Rheological results indicated an optimum SAMPS intake (25 mol %) for the balanced performance of viscosity and salt resistance in saline water. The intake of NIPAM units (e.g., 25 mol %), contrary to what was expected, undermines the thickening ability of the copolymers in saline water because of hydrophobic association. In high salinity solution, thermo-thickening behavior can be observed at low shear rates (γ≤ 3 s-1) because of the screening effect of salt on the negatively charged SAMPS units. At the high shear rate, the thermo-thickening behavior disappears because of the disruption of the NIPAM aggregates. These results pave the way toward the use of the prepared polymers as rheology modifiers in a variety of possible formulations for different applications, in particular in enhanced oil recovery.
UR - http://www.scopus.com/inward/record.url?scp=85088889802&partnerID=8YFLogxK
U2 - 10.1021/acs.iecr.9b06893
DO - 10.1021/acs.iecr.9b06893
M3 - Article
AN - SCOPUS:85088889802
VL - 59
SP - 10847
EP - 10856
JO - Industrial and Engineering Chemistry Research
JF - Industrial and Engineering Chemistry Research
SN - 0888-5885
IS - 23
ER -